Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(2): e0329623, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38193688

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic triggered the implementation of large-scale screenings in the health care and in the general population. Consequently, medical laboratories have to apply lean laboratory management to design workflows that are able to process large batches within short turnaround times while maintaining flexibility to use different SARS-CoV-2 reverse transcription polymerase chain reactions (RT-PCRs) and to be able to process a variety of clinical samples. We validated two SARS-CoV-2 PCR assays on the STARlet workflow: Allplex SARS-CoV-2 PCR kit and RealAccurate Quadruplex SARS-CoV-2 PCR kit. Furthermore, we optimized and validated the STARlet workflow for semi-automatic screening for SARS-CoV-2 in upper respiratory swabs and deep respiratory materials (sputa, bronchoalveolar lavage, and aspirate). Strikingly, guanidine-containing lysis buffers allow for easy processing and can enhance sensitivity of SARS-COV-2 screening since sampling in these buffers may preserve viral transcripts as evident by the higher copy numbers of the SARS-CoV-2 N gene. Moreover, using the principles of lean laboratory management, several bottlenecks that are typical for medical laboratories were addressed. We show that lean laboratory management resulted in significant reduction of the turnaround times of the SARS-CoV-2 PCR in our laboratory. This report thus describes a useful framework for laboratories to implement similar semi-automated workflows.IMPORTANCEThe SARS-CoV-2 pandemic triggered the implementation of large-scale screenings in the health care and in the general population. Consequently, medical laboratories had to adapt and evolve workflows that are able to process large batches within short turnaround times while maintaining flexibility to use different assays and to be able to process a variety of clinical samples. We describe how the need for increased outputs and greater flexibility was addressed with respect to clinical samples and assays (Allplex SARS-CoV-2 PCR and RealAccurate Quadruplex SARS-CoV-2 PCR). Strikingly, we found that upper respiratory swabs collected in guanidine-containing lysis buffers both improved the ease of processing as well as enhanced the sensitivity of the SARS-CoV-2 screening. This report thus describes a useful framework for laboratories to implement and optimize similar semi-automated workflows.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Workflow , Sensitivity and Specificity , Guanidines , Polymerase Chain Reaction , COVID-19 Testing
2.
Emerg Infect Dis ; 28(4): 890-892, 2022 04.
Article in English | MEDLINE | ID: mdl-35318925

ABSTRACT

An increase in positive Bordetella parapertussis tests among patients in a teaching hospital in the Netherlands resulted in enhanced infection control and microbiological surveillance. Further analysis revealed that batches of contaminated nasopharyngeal swabs were associated with a pseudo-outbreak, resulting in incorrect diagnoses, antimicrobial treatments, isolation precautions, and public health notifications.


Subject(s)
Bordetella Infections , Bordetella parapertussis , Bordetella Infections/diagnosis , Bordetella Infections/epidemiology , Bordetella Infections/microbiology , Bordetella pertussis , Disease Outbreaks , Humans , Netherlands/epidemiology
3.
Front Microbiol ; 11: 611, 2020.
Article in English | MEDLINE | ID: mdl-32351474

ABSTRACT

Staphylococcus aureus is a well-known colonizer of the human skin and nose, but also a human pathogen that causes a wide spectrum of diseases. It is well established that S. aureus secretes an arsenal of virulence factors that have evolved to circumvent the human immune system. A major group of S. aureus virulence factors is the bi-component ß-barrel pore-forming toxins, also known as leukocidins. These pore-forming toxins target specific cells of the innate and adaptive immune system by interacting with specific receptors expressed on the cell membrane. Even though still heavily debated, clinical and epidemiological studies suggest the involvement of one of the bi-component toxin, Panton-Valentine Leukocidin (PVL), as an important factor contributing to the epidemic spread and increased virulence of CA-MRSA strains. However, the host- and cell-specificity of PVL and other leukocidins, and the lack of adequate in vivo models, fuels the controversy and impairs the appropriate assessment of their role in S. aureus pathophysiology. Currently, the mechanisms of pore-formation and the contribution of PVL and other leukocidins to S. aureus pathophysiology are incompletely understood. This review summarizes our current understanding of leukocidin pore-formation, knowledge gaps, and highlights recent findings identifying novel host-factors involved in the toxin-host interface. As a result, this review furthers emphasizes the complexity behind S. aureus leukocidin cytotoxicity and the challenges associated in the quest to study and understand these major virulence factors.

4.
Dis Model Mech ; 13(9)2020 09 28.
Article in English | MEDLINE | ID: mdl-32471891

ABSTRACT

Bacterial pathogens have evolved to secrete strong anti-inflammatory proteins that target the immune system. It was long speculated whether these virulence factors could serve as therapeutics in diseases in which abnormal immune activation plays a role. We adopted the secreted chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) as a model virulence factor-based therapeutic agent for diseases in which C5AR1 stimulation plays an important role. We show that the administration of CHIPS in human C5AR1 knock-in mice successfully dampens C5a-mediated neutrophil migration during immune complex-initiated inflammation. Subsequent CHIPS toxicology studies in animal models were promising. However, during a small phase I trial, healthy human volunteers showed adverse effects directly after CHIPS administration. Subjects showed clinical signs of anaphylaxis with mild leukocytopenia and increased C-reactive protein concentrations, which are possibly related to the presence of relatively high circulating anti-CHIPS antibodies and suggest an inflammatory response. Even though our data in mice show CHIPS as a potential anti-inflammatory agent, safety issues in human subjects temper the use of CHIPS in its current form as a therapeutic candidate. The use of staphylococcal proteins, or other bacterial proteins, as therapeutics or immune-modulators in humans is severely hampered by pre-existing circulating antibodies.


Subject(s)
Antibodies, Bacterial/adverse effects , Bacterial Proteins/metabolism , Adolescent , Adult , Animals , Antigen-Antibody Complex/metabolism , Biomarkers/blood , Cell Movement , Complement C5a/metabolism , Disease Models, Animal , Healthy Volunteers , Humans , Male , Mast Cells/enzymology , Mice, Transgenic , Middle Aged , Neutrophils/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Tryptases/blood , Young Adult
5.
Toxins (Basel) ; 12(2)2020 02 06.
Article in English | MEDLINE | ID: mdl-32041354

ABSTRACT

Staphylococcal bi-component pore-forming toxins, also known as leukocidins, target and lyse human phagocytes in a receptor-dependent manner. S-components of the leukocidins Panton-Valentine leukocidin (PVL), γ-haemolysin AB (HlgAB) and CB (HlgCB), and leukocidin ED (LukED) specifically employ receptors that belong to the class of G-protein coupled receptors (GPCRs). Although these receptors share a common structural architecture, little is known about the conserved characteristics of the interaction between leukocidins and GPCRs. In this study, we investigated host cellular pathways contributing to susceptibility towards S. aureus leukocidin cytotoxicity. We performed a genome-wide CRISPR/Cas9 library screen for toxin-resistance in U937 cells sensitized to leukocidins by ectopic expression of different GPCRs. Our screen identifies post-translational modification (PTM) pathways involved in the sulfation and sialylation of the leukocidin-receptors. Subsequent validation experiments show differences in the impact of PTM moieties on leukocidin toxicity, highlighting an additional layer of refinement and divergence in the staphylococcal host-pathogen interface. Leukocidin receptors may serve as targets for anti-staphylococcal interventions and understanding toxin-receptor interactions will facilitate the development of innovative therapeutics. Variations in the genes encoding PTM pathways could provide insight into observed differences in susceptibility of humans to infections with S. aureus.


Subject(s)
Host Microbial Interactions/genetics , Leukocidins/toxicity , Protein Processing, Post-Translational , Receptors, G-Protein-Coupled/metabolism , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity , CRISPR-Cas Systems , Cell Culture Techniques , Cell Survival/genetics , Drug Resistance, Bacterial/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , HEK293 Cells , Humans , Leukocidins/genetics , Leukocidins/metabolism , Phagocytes/microbiology , Phagocytes/pathology , Protein Binding , Receptors, G-Protein-Coupled/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , U937 Cells
6.
Nat Microbiol ; 3(10): 1187, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30177744

ABSTRACT

In the version of this Article originally published, the name of author Robert Jan Lebbink was coded wrongly, resulting in it being incorrect when exported to citation databases. This has now been corrected, though no visible changes will be apparent.

7.
Nat Microbiol ; 3(6): 708-717, 2018 06.
Article in English | MEDLINE | ID: mdl-29736038

ABSTRACT

The staphylococcal bi-component leukocidins Panton-Valentine leukocidin (PVL) and γ-haemolysin CB (HlgCB) target human phagocytes. Binding of the toxins' S-components to human complement C5a receptor 1 (C5aR1) contributes to cellular tropism and human specificity of PVL and HlgCB. To investigate the role of both leukocidins during infection, we developed a human C5aR1 knock-in (hC5aR1KI) mouse model. HlgCB, but unexpectedly not PVL, contributed to increased bacterial loads in tissues of hC5aR1KI mice. Compared to humans, murine hC5aR1KI neutrophils showed a reduced sensitivity to PVL, which was mediated by the toxin's F-component LukF-PV. By performing a genome-wide CRISPR-Cas9 screen, we identified CD45 as a receptor for LukF-PV. The human-specific interaction between LukF-PV and CD45 provides a molecular explanation for resistance of hC5aR1KI mouse neutrophils to PVL and probably contributes to the lack of a PVL-mediated phenotype during infection in these mice. This study demonstrates an unsuspected role of the F-component in driving the sensitivity of human phagocytes to PVL.


Subject(s)
Bacterial Toxins/metabolism , Exotoxins/metabolism , Leukocidins/metabolism , Leukocyte Common Antigens/metabolism , Receptor, Anaphylatoxin C5a/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Animals , Bacterial Load , Bacterial Proteins/metabolism , CRISPR-Cas Systems , Cell Line , Disease Models, Animal , Hemolysin Proteins/metabolism , Humans , Mice , Mice, Knockout , Neutrophils/metabolism , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism
8.
Protein Sci ; 27(2): 509-522, 2018 02.
Article in English | MEDLINE | ID: mdl-29114958

ABSTRACT

Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.


Subject(s)
Leukocyte Elastase/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Staphylococcus aureus/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cell Line , Humans , Immune Evasion , Models, Molecular , Mutation , Protein Binding , Protein Domains , Serine Proteinase Inhibitors/genetics , Staphylococcus aureus/enzymology
9.
Biomaterials ; 40: 88-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25465442

ABSTRACT

Dendritic cells (DC) play a prominent role in the priming of CD8(+) T cells. Vaccination is a promising treatment to boost tumor-specific CD8(+) T cells which is crucially dependent on adequate delivery of the vaccine to DC. Upon subcutaneous (s.c.) injection, only a small fraction of the vaccine is delivered to DC whereas the majority is cleared by the body or engulfed by other immune cells. To overcome this, we studied vaccine delivery to DC via CD40-targeting using a multi-compound particulate vaccine with the aim to induce potent CD8(+) T cell responses. To this end, biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP) were formulated encapsulating a protein Ag, Pam3CSK4 and Poly(I:C) and coated with an agonistic αCD40-mAb (NP-CD40). Targeting NP to CD40 led to very efficient and selective delivery to DC in vivo upon s.c. injection and improved priming of CD8(+) T cells against two independent tumor associated Ag. Therapeutic application of NP-CD40 enhanced tumor control and prolonged survival of tumor-bearing mice. We conclude that CD40-mediated delivery to DC of NP-vaccines, co-encapsulating Ag and adjuvants, efficiently drives specific T cell responses, and therefore, is an attractive method to improve the efficacy of protein based cancer vaccines undergoing clinical testing in the clinic.


Subject(s)
CD40 Antigens/metabolism , Cancer Vaccines/immunology , Dendritic Cells/immunology , Lactic Acid/chemistry , Nanoparticles/chemistry , Neoplasms/immunology , Polyglycolic Acid/chemistry , Animals , Antibodies, Monoclonal/metabolism , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Endocytosis , Interferon-gamma/biosynthesis , Ligands , Mice, Inbred C57BL , Neoplasms/pathology , Polylactic Acid-Polyglycolic Acid Copolymer , Toll-Like Receptors/metabolism , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...