Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Psychiatry Res Neuroimaging ; 330: 111616, 2023 04.
Article in English | MEDLINE | ID: mdl-36827958

ABSTRACT

It has been reported that childhood trauma (CT) is associated with reductions in fractional anisotropy (FA) in individuals with schizophrenia (SZ). Here, we hypothesized that SZ with high levels of CT will show the greatest reductions in FA in frontolimbic and frontoparietal regions compared to healthy controls (HC) with high trauma levels and participants with no/low levels of CT. Thirty-seven SZ and 129 HC with CT experience were dichotomized into groups of 'none/low' or 'high' levels. Participants underwent diffusion-weighted MRI, and Tract-based spatial statistics were employed to assess the main effect of diagnosis, main effect of CT severity irrespective of diagnosis, and interaction between diagnosis and CT severity. SZ showed FA reductions in the corpus callosum and corona radiata compared to HC. Irrespective of a diagnosis, high CT levels (n = 48) were related to FA reductions in frontolimbic and frontoparietal regions compared to those with none/low levels of CT (n = 118). However, no significant interaction between diagnosis and high levels of CT was found (n = 13). Across all participants, we observed effects of CT on late developing frontolimbic and frontoparietal regions, suggesting that the effects of CT severity on white matter organization may be independent of schizophrenia.


Subject(s)
Adverse Childhood Experiences , Schizophrenia , White Matter , Humans , Schizophrenia/complications , Diffusion Tensor Imaging , Diffusion Magnetic Resonance Imaging
3.
Hum Brain Mapp ; 43(1): 56-82, 2022 01.
Article in English | MEDLINE | ID: mdl-32725849

ABSTRACT

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.


Subject(s)
Bipolar Disorder , Cerebral Cortex , Magnetic Resonance Imaging , Neuroimaging , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Humans , Meta-Analysis as Topic , Multicenter Studies as Topic
5.
Psychiatry Res ; 298: 113772, 2021 04.
Article in English | MEDLINE | ID: mdl-33556689

ABSTRACT

This study investigates changes on white matter microstructure and neural networks after 6 months of switching to clozapine in schizophrenia patients compared to controls, and whether any changes are related to clinical variables. T1 and diffusion-weighted MRI images were acquired at baseline before commencing clozapine and after 6 months of treatment for 22 patients with treatment-resistant schizophrenia and 23 controls. The Tract-based spatial statistics approach was used to compare changes over time between groups in fractional anisotropy (FA). Changes in structural network organisation weighted by FA and number of streamlines were assessed using graph theory. Patients displayed a significant reduction of FA over time (p<0.05) compared to controls in the genu and body of the corpus callosum and bilaterally in the anterior and superior corona radiata. There was no correlation between FA change in patients and changes in clinical variables or serum level of clozapine. There was no changes in structural network organisation between groups (F(7,280)=2.80;p = 0.187). This longitudinal study demonstrated progressive focal FA abnormalities in key anterior tracts, but preserved brain structural network organisation in patients. The FA reduction was independent of any clinical measures and may reflect progression of the underlying pathophysiology of this malignant form of schizophrenia illness.


Subject(s)
Clozapine , Schizophrenia , White Matter , Anisotropy , Brain/diagnostic imaging , Clozapine/therapeutic use , Diffusion Tensor Imaging , Humans , Longitudinal Studies , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , White Matter/diagnostic imaging
6.
J Psychiatr Res ; 130: 137-151, 2020 11.
Article in English | MEDLINE | ID: mdl-32818662

ABSTRACT

The location, extent and progression of longitudinal morphometric changes after first-episode of psychosis (FEP) remains unclear. We investigated ventricular and cortico-subcortical regions over a 3-year period in FEP patients compared with healthy controls. High resolution 1.5T T1-weighted MR images were obtained at baseline from 28 FEP patients at presentation and 28 controls, and again after 3-years. The longitudinal FreeSurfer pipeline (v.5.3.0) was used for regional volumetric and cortical reconstruction image analyses. Repeated-measures ANCOVA and vertex-wise linear regression analyses compared progressive changes between groups in subcortical structures and cortical thickness respectively. Compared with controls, patients displayed progressively reduced volume of the caudate [F (1,51)=5.86, p=0.02, Hedges' g=0.66], putamen [F (1,51)=6.06, p=0.02, g=0.67], thalamus [F (1,51)=6.99, p=0.01, g=0.72] and increased right lateral ventricular volume [F (1, 51)=4.03, p=0.05], and significantly increased rate of cortical thinning [F (1,52)=5.11, p=0.028)] at a mean difference of 0.84% [95% CI (0.10, 1.59)] in the left lateral orbitofrontal region over the 3-year period. In patients, greater reduction in putamen volume over time was associated with lower cumulative antipsychotic medication dose (r=0.49, p=0.01), and increasing lateral ventricular volume over time was associated with worsening negative symptoms (r=0.41, p=0.04) and poorer global functioning (r= -0.41, p=0.04). This study demonstrates localised progressive structural abnormalities in the cortico-striato-thalamo-cortical circuit after the onset of psychosis, with increasing ventricular volume noted as a neuroanatomical marker of poorer clinical and functional outcome.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Antipsychotic Agents/therapeutic use , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy
8.
Psychiatry Res Neuroimaging ; 302: 111100, 2020 08 30.
Article in English | MEDLINE | ID: mdl-32464535

ABSTRACT

The association of neuroanatomical progression with cognitive and clinical deterioration after first-episode of psychosis remains uncertain. This longitudinal study aims to assess whether i)impaired executive functioning and emotional intelligence at first presentation are associated with progressive prefrontal and orbitofrontal cortical thinning ii)negative symptom severity is linked to progressive prefrontal cortical thinning. 1.5T MRI images were acquired at baseline and after 3.5 years for 20 individuals with first-episode psychosis and 18 controls. The longitudinal pipeline of Freesurfer was employed to parcellate prefrontal cortex at two time points. Baseline cognitive performance was compared between diagnostic groups using MANCOVA. Partial correlations investigated relationships between cognition and negative symptoms at baseline and cortical thickness change over time. Patients displayed poorer performance than controls at baseline in working memory, reasoning/problem solving and emotional intelligence. In patients, loss of prefrontal and orbitofrontal thickness over time was predicted by impaired working memory and emotional intelligence respectively at baseline. Moreover, exploratory analyses revealed that the worsening of negative symptoms over time was significantly related to prefrontal cortical thinning. Results indicate that specific cognitive deficits at the onset of psychotic illness are markers of progressive neuroanatomical deficits and that worsening of negative symptoms occurs with prefrontal thickness reduction as the illness progresses.


Subject(s)
Cognitive Dysfunction/psychology , Emotional Intelligence , Executive Function , Memory, Short-Term , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders/psychology , Adolescent , Adult , Case-Control Studies , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Disease Progression , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Memory Disorders , Organ Size , Prefrontal Cortex/pathology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Young Adult
9.
Neuropsychopharmacology ; 45(8): 1353-1361, 2020 07.
Article in English | MEDLINE | ID: mdl-32268345

ABSTRACT

The association of antipsychotic medication with abnormal brain morphometry in schizophrenia remains uncertain. This study investigated subcortical morphometric changes 6 months after switching treatment to clozapine in patients with treatment-resistant schizophrenia compared with healthy volunteers, and the relationships between longitudinal volume changes and clinical variables. In total, 1.5T MRI images were acquired at baseline before commencing clozapine and again after 6 months of treatment for 33 patients with treatment-resistant schizophrenia and 31 controls, and processed using the longitudinal pipeline of Freesurfer v.5.3.0. Two-way repeated MANCOVA was used to assess group differences in subcortical volumes over time and partial correlations to determine association with clinical variables. Whereas no significant subcortical volume differences were found between patients and controls at baseline (F(8,52) = 1.79; p = 0.101), there was a significant interaction between time, group and structure (F(7,143) = 52.54; p < 0.001). Corrected post-hoc analyses demonstrated that patients had significant enlargement of lateral ventricles (F(1,59) = 48.89; p < 0.001) and reduction of thalamus (F(1,59) = 34.85; p < 0.001), caudate (F(1,59) = 59.35; p < 0.001), putamen (F(1,59) = 87.20; p < 0.001) and hippocampus (F(1,59) = 14.49; p < 0.001) volumes. Thalamus and putamen volume reduction was associated with improvement in PANSS (r = 0.42; p = 0.021, r = 0.39; p = 0.033), SANS (r = 0.36; p = 0.049, r = 0.40; p = 0.027) and GAF (r = -0.39; p = 0.038, r = -0.42; p = 0.024) scores. Reduced thalamic volume over time was associated with increased serum clozapine level at follow-up (r = -0.44; p = 0.010). Patients with treatment-resistant schizophrenia display progressive subcortical volume deficits after switching to clozapine despite experiencing symptomatic improvement. Thalamo-striatal progressive volumetric deficit associated with symptomatic improvement after clozapine exposure may reflect an adaptive response related to improved outcome rather than a harmful process.


Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Antipsychotic Agents/therapeutic use , Clozapine/therapeutic use , Hippocampus , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy
10.
Article in English | MEDLINE | ID: mdl-31806486

ABSTRACT

BACKGROUND: Graph theory applied to brain networks is an emerging approach to understanding the brain's topological associations with human cognitive ability. Despite well-documented cognitive impairments in bipolar disorder (BD) and recent reports of altered anatomical network organization, the association between connectivity and cognitive impairments in BD remains unclear. METHODS: We examined the role of anatomical network connectivity derived from T1- and diffusion-weighted magnetic resonance imaging in impaired cognitive performance in individuals with BD (n = 32) compared with healthy control individuals (n = 38). Fractional anisotropy- and number of streamlines-weighted anatomical brain networks were generated by mapping constrained spherical deconvolution-reconstructed white matter among 86 cortical/subcortical bilateral brain regions delineated in the individual's own coordinate space. Intelligence and executive function were investigated as distributed functions using measures of global, rich-club, and interhemispheric connectivity, while memory and social cognition were examined in relation to subnetwork connectivity. RESULTS: Lower executive functioning related to higher global clustering coefficient in participants with BD, and lower IQ performance may present with a differential relationship between global and interhemispheric efficiency in individuals with BD relative to control individuals. Spatial recognition memory accuracy and response times were similar between diagnostic groups and associated with basal ganglia and thalamus interconnectivity and connectivity within extended anatomical subnetworks in all participants. No anatomical subnetworks related to episodic memory, short-term memory, or social cognition generally or differently in BD. CONCLUSIONS: Results demonstrate selective influence of subnetwork patterns of connectivity in underlying cognitive performance generally and abnormal global topology underlying discrete cognitive impairments in BD.


Subject(s)
Bipolar Disorder , Brain , Cognition Disorders , Cognitive Dysfunction , Bipolar Disorder/complications , Brain/physiology , Cognition , Cognition Disorders/complications , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...