Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 279: 116493, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805825

ABSTRACT

Strobilurins, among the most used fungicides worldwide, are considered non-toxic to mammals and birds, but there is growing evidence that these compounds are highly toxic to aquatic species. Dimoxystrobin has been included in the 3rd Watch List of the European Commission, and it has been classified as very toxic to aquatic life. However, previous studies focused on acute toxicity and only two reports are available on its impact on fish, and none on its effects during the early life stages. Here, we evaluated for the first time the effects induced on zebrafish embryos and larvae by two dimoxystrobin sublethal concentrations (6.56 and 13.13 µg/L) falling in the range of predicted environmental concentrations. We demonstrated that short-term exposure to dimoxystrobin may exert adverse effects on multiple targets, inducing severe morphological alterations. Moreover, we showed enhanced mRNA levels of genes related to the mitochondrial respiratory chain and ATP production. Impairment of the swim bladder inflation has also been recorded, which may be related to the observed swimming performance alterations.


Subject(s)
Embryo, Nonmammalian , Fungicides, Industrial , Larva , Mitochondria , Strobilurins , Water Pollutants, Chemical , Zebrafish , Animals , Fungicides, Industrial/toxicity , Larva/drug effects , Strobilurins/toxicity , Mitochondria/drug effects , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Swimming , Air Sacs/drug effects , Behavior, Animal/drug effects
2.
Antioxidants (Basel) ; 10(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34942966

ABSTRACT

The eye is continuously under oxidative stress due to high metabolic activity and reactive oxygen species generated by daily light exposure. The redox-sensitive protein DJ-1 has proven to be essential in order to protect retina and retinal pigment epithelium (RPE) from oxidative-stress-induced degeneration. Here, we analyzed the specific role of Müller cell DJ-1 in the adult zebrafish retina by re-establishing Müller-cell-specific DJ-1 expression in a DJ-1 knockout retina. Loss of DJ-1 resulted in an age-dependent retinal degeneration, including loss of cells in the ganglion cell layer, retinal thinning, photoreceptor disorganization and RPE cell dysfunction. The degenerative phenotype induced by the absence of DJ-1 was inhibited by solely expressing DJ-1 in Müller cells. The protective effect was dependent upon the cysteine-106 residue of DJ-1, which has been shown to be an oxidative sensor of DJ-1. In a label-free proteomics analysis of isolated retinas, we identified proteins differentially expressed after DJ-1 knockout, but with restored levels after Müller cell DJ-1 re-insertion. Our data show that Müller cell DJ-1 has a major role in protecting the retina from age-dependent oxidative stress.

3.
Ecotoxicol Environ Saf ; 228: 113013, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34839140

ABSTRACT

Oil spill clean-up measures using in situ burning can potentially result in seafloor contamination affecting benthic organisms. To mimic realistic exposure and measure effects, ovigerous Northern shrimp were continuously exposed for two weeks to the water-soluble fraction of oil coated on gravel followed by two weeks in clean seawater. North Sea crude oil (NSC) and field generated in situ burn residue (ISBR) of NSC were used (Low: 3 g/kg gravel, Medium: 6 g/kg gravel and High: 12 g/kg gravel). The concentrations of polyaromatic hydrocarbons (PAHs) in the water resulting from NSC were higher compared to ISBR. No mortality was observed in any treatment and overall moderate sublethal effects were found, mostly after exposure to NSC. Feeding was temporarily reduced at higher concentrations of NSC. PAH levels in hepatopancreas tissue were significantly elevated following exposure and still significantly higher at the end of the experiment in NSCHigh and ISBRHigh compared to control. Mild inflammatory response reactions and tissue ultrastructural alterations in gill tissue were observed in both treatments. Signs of necrosis occurred in ISBRHigh. No change in shrimp locomotory activity was noted from NSC exposure. However, ISBR exposure increased activity temporarily. Larvae exposed as pleopod-attached embryos showed significant delay in development from stage I to stage II after exposure to NSCHigh. Based on this study, oil-contaminated seafloor resulting from in situ burning clean-up actions does not appear to cause serious effects on bottom-living shrimp.

4.
Aquat Toxicol ; 226: 105558, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32673888

ABSTRACT

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of dioxins and dioxin-like compounds (DLCs) in vertebrates. Two clades of the Ahr family exist in teleosts (Ahr1 and Ahr2), and it has been demonstrated that Ahr2 is the main protein involved in mediating the toxicity of dioxins and DLCs in most teleost species. Recently, we characterized the Atlantic cod (Gadus morhua) Ahr1a and Ahr2a receptors. To further explore a possible subfunction partitioning of Ahr1a and Ahr2a in Atlantic cod we have mapped the expression and localization of ahr1a and ahr2a in early developmental stages. Atlantic cod embryos were continuously exposed in a passive-dosing exposure system to the Ahr agonist, benzo[a]pyrene (B[a]P), from five days post fertilization (dpf) until three days post hatching (dph). Expression of ahr1a, ahr2a, and the Ahr-target genes, cyp1a and ahrrb, was assessed in embryos (8 dpf and 10 dpf) and larvae (3 dph) with quantitative real-time PCR analyses (qPCR), while in situ hybridization was used to assess the localization of expression of ahr1a, ahr2a and cyp1a. Quantitative measurements showed an increased cyp1a expression in B[a]P-exposed samples at all sampling points, and for ahr2a at 10 dpf, confirming the activation of the Ahr-signalling pathway. Furthermore, B[a]P strongly induced ahr2a and cyp1a expression in the cardiovascular system and skin, respectively, of embryos and larvae. Induced expression of both ahr2a and cyp1a was also revealed in the liver of B[a]P-exposed larvae. Our results suggest that Ahr2a is the major subtype involved in mediating responses to B[a]P in early developmental stages of Atlantic cod, which involves transcriptional regulation of biotransformation genes, such as cyp1a. The focused expression of ahr1a in the eye of embryos and larvae, and the presence of ahr2a transcripts in the jaws and fin nodes, further indicate evolved specialized roles of the two Ahrs in ontogenesis.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Gadus morhua/growth & development , Gene Expression Regulation, Developmental/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Animals , Benzo(a)pyrene/toxicity , Cytochrome P-450 CYP1A1/genetics , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Eye/drug effects , Eye/embryology , Eye/metabolism , Gadus morhua/genetics , Gadus morhua/metabolism , Larva/drug effects , Larva/genetics , Liver/drug effects , Liver/growth & development , Liver/metabolism , Receptors, Aryl Hydrocarbon/genetics , Water Pollutants, Chemical/toxicity
5.
J Fish Biol ; 93(3): 567-579, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29952001

ABSTRACT

The use of closed containment (CCS) or semi-closed containment systems (S-CCS) for Atlantic salmon Salmo salar aquaculture is under evaluation in Norway. One such system is the Preline S-CCS, a floating raceway system that pumps water from 35 m depth creating a constant current through the system. Exposing fish to moderate water currents is considered aerobic exercise and it is often perceived as positive for fish welfare, growth, food utilization, muscle development and cardiac health. The present study compared fish reared in the Preline S-CCS and in a reference open pen. Samples were taken in fresh water before being transferred to the seawater systems and after 1, 2 and 4 months in seawater and analysed for growth, mortality, muscle development and plasma insulin-like growth factor I (IGF-I) levels. Moreover, gene transcription were determined in the skeletal muscle [igf-I, insulin-like growth factor 1 receptor a (igf1ra) and insulin-like growth factor 1 binding protein 1a (igf1bp1a)] and cardiac transcription factors [myocyte-specific enhancer factor 2C (mef2c), gata4 and vascular endothelial growth factor (vegf)]. While the results suggest that post-smolts in Preline S-CCS were smaller than reference fish, fish from Preline S-CCS have less accumulated mortality at the end of the experiment and showed 2.44 times more small muscle fibres than the reference group fish after 4 months in seawater. These results confirmed what was previously observed in the second generation of Preline. Similar levels of big muscle fibres between Preline S-CCS and reference suggest a similar hypertrophy of muscle fibres even with lower IGF-I expression in the Preline S-CCS. Cardiac gene transcription suggests cardiac hypertrophy was observed after 4 months in seawater in the Preline S-CCS group. Altogether, Preline S-CCS is a promising technology able to produce more robust S. salar with a faster growth and lower mortality in the subsequent standard open cage system growth period.


Subject(s)
Aquaculture/instrumentation , Muscle Development , Physical Conditioning, Animal , Salmo salar/growth & development , Animals , Fresh Water , Housing, Animal , Insulin-Like Growth Factor I/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/metabolism , Norway , Oceans and Seas , Salmo salar/anatomy & histology , Salmo salar/blood , Seawater , Swimming , Transcription, Genetic , Vascular Endothelial Growth Factor A/metabolism , Water Quality
6.
J Exp Biol ; 220(Pt 8): 1524-1532, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28167808

ABSTRACT

Despite the use of fish models to study human mental disorders and dysfunctions, knowledge of regional telencephalic responses in non-mammalian vertebrates expressing alternative stress coping styles is poor. As perception of salient stimuli associated with stress coping in mammals is mainly under forebrain limbic control, we tested region-specific forebrain neural (i.e. mRNA abundance and monoamine neurochemistry) and endocrine responses under basal and acute stress conditions for previously characterised proactive and reactive Atlantic salmon. Reactive fish showed a higher degree of the neurogenesis marker proliferating cell nuclear antigen (pcna) and dopamine activity under basal conditions in the proposed hippocampus homologue (Dl) and higher post-stress plasma cortisol levels. Proactive fish displayed higher post-stress serotonergic signalling (i.e. higher serotonergic activity and expression of the 5-HT1A receptor) in the proposed amygdala homologue (Dm), increased expression of the neuroplasticity marker brain-derived neurotropic factor (bdnf) in both Dl and the lateral septum homologue (Vv), as well as increased expression of the corticotropin releasing factor 1 (crf1 ) receptor in the Dl, in line with active coping neuro-profiles reported in the mammalian literature. We present novel evidence of proposed functional equivalences in the fish forebrain with mammalian limbic structures.


Subject(s)
Prosencephalon/physiology , Salmo salar/physiology , Stress, Physiological , Animal Migration , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hydrocortisone/blood , Neurogenesis , Neuronal Plasticity , Oxygen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Salmo salar/blood , Transcription, Genetic
7.
Int J Mol Sci ; 17(3): 361, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26978352

ABSTRACT

Mercury (Hg) is a highly hazardous pollutant widely used in industrial, pharmaceutical and agricultural fields. Mercury is found in the environment in several forms, elemental, inorganic (iHg) and organic, all of which are toxic. Considering that the liver is the organ primarily involved in the regulation of metabolic pathways, homeostasis and detoxification we investigated the morphological and ultrastructural effects in Danio rerio liver after 96 h exposure to two low HgCl2 concentrations (7.7 and 38.5 µg/L). We showed that a short-term exposure to very low concentrations of iHg severely affects liver morphology and ultrastructure. The main effects recorded in this work were: cytoplasm vacuolization, decrease in both lipid droplets and glycogen granules, increase in number of mitochondria, increase of rough endoplasmic reticulum and pyknotic nuclei. Pathological alterations observed were dose dependent. Trough immunohistochemistry, in situ hybridization and real-time PCR analysis, the induction of metallothionein (MT) under stressor conditions was also evaluated. Some of observed alterations could be considered as a general response of tissue to heavy metals, whereas others (such as increased number of mitochondria and increase of RER) may be considered as an adaptive response to mercury.


Subject(s)
Liver/drug effects , Mercuric Chloride/toxicity , Metallothionein/metabolism , Zebrafish/anatomy & histology , Animals , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress , Glycogen/metabolism , Lipid Droplets/metabolism , Liver/metabolism , Liver/ultrastructure , Mercuric Chloride/administration & dosage , Metallothionein/genetics , Mitochondria/drug effects , Mitochondria/ultrastructure , Zebrafish/metabolism , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...