Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Gut Microbes ; 16(1): 2350173, 2024.
Article in English | MEDLINE | ID: mdl-38738780

ABSTRACT

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Intestine, Small , Synbiotics , Humans , Synbiotics/administration & dosage , Gastrointestinal Microbiome/physiology , Male , Adult , Intestine, Small/microbiology , Intestine, Small/metabolism , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Feces/microbiology , Young Adult , Probiotics/administration & dosage , Metabolome , Healthy Volunteers , Spatio-Temporal Analysis
2.
Regen Ther ; 27: 207-217, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38576851

ABSTRACT

Background: Perinatal inflammation increases the risk for bronchopulmonary dysplasia in preterm neonates, but the underlying pathophysiological mechanisms remain largely unknown. Given their anti-inflammatory and regenerative capacity, multipotent adult progenitor cells (MAPC) are a promising cell-based therapy to prevent and/or treat the negative pulmonary consequences of perinatal inflammation in the preterm neonate. Therefore, the pathophysiology underlying adverse preterm lung outcomes following perinatal inflammation and pulmonary benefits of MAPC treatment at the interface of prenatal inflammatory and postnatal ventilation exposures were elucidated. Methods: Instrumented ovine fetuses were exposed to intra-amniotic lipopolysaccharide (LPS 5 mg) at 125 days gestation to induce adverse systemic and peripheral organ outcomes. MAPC (10 × 106 cells) or saline were administered intravenously two days post LPS exposure. Fetuses were delivered preterm five days post MAPC treatment and either killed humanely immediately or mechanically ventilated for 72 h. Results: Antenatal LPS exposure resulted in inflammation and decreased alveolar maturation in the preterm lung. Additionally, LPS-exposed ventilated lambs showed continued pulmonary inflammation and cell junction loss accompanied by pulmonary edema, ultimately resulting in higher oxygen demand. MAPC therapy modulated lung inflammation, prevented loss of epithelial and endothelial barriers and improved lung maturation in utero. These MAPC-driven improvements remained evident postnatally, and prevented concomitant pulmonary edema and functional loss. Conclusion: In conclusion, prenatal inflammation sensitizes the underdeveloped preterm lung to subsequent postnatal inflammation, resulting in injury, disturbed development and functional impairment. MAPC therapy partially prevents these changes and is therefore a promising approach for preterm infants to prevent adverse pulmonary outcomes.

3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612809

ABSTRACT

Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.


Subject(s)
Chorioamnionitis , Ureaplasma Infections , Pregnancy , Sheep , Animals , Humans , Female , Infant, Newborn , Ureaplasma Infections/complications , Intestines , Causality , Mucus
4.
Front Nutr ; 10: 1245355, 2023.
Article in English | MEDLINE | ID: mdl-38089924

ABSTRACT

Background and aims: Observational data indicate that diets rich in fruits and vegetables have a positive effect on inflammatory status, improve metabolic resilience and may protect against the development of non-communicable diseases. Nevertheless, experimental evidence demonstrating a causal relationship between nutrient intake (especially whole foods) and changes in metabolic health is scarce. This study investigated the pleiotropic effects of sulforaphane from broccoli sprouts, compared to pea sprouts, on biomarkers of endothelial function, inflammation and metabolic stress in healthy participants subjected to a standardized caloric challenge. Methods: In this double-blind, crossover, randomized, placebo-controlled trial 12 healthy participants were administered 16 g broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to disturb healthy homeostasis. Levels of inflammatory biomarkers and metabolic parameters were measured in plasma before and 2 h after the caloric overload. Results: Administration of broccoli sprouts promoted an increase in levels of CCL-2 induced by caloric load (p = 0.017). Other biomarkers (sICAM-1, sVCAM-1, hs-CRP, and IL-10) individually showed insignificant tendencies toward increase with administration of sulforaphane. Combining all studied biomarkers into the systemic low-grade inflammation score further confirmed upregulation of the inflammatory activity (p = 0.087) after sulforaphane. No significant effects on biomarkers of metabolic stress were detected. Conclusion: This study has demonstrated that sulforaphane facilitated development of a mild pro-inflammatory state during the caloric challenge, which could be suggestive of the onset of the hormetic response induced by this phytonutrient. The use of integrative outcomes measures such as the systemic low-grade inflammation score can be viewed as a more robust approach to study the subtle and pleiotropic effects of phytonutrients.Clinical trial registration:www.clinicaltrials.gov, identifier NCT05146804.

5.
Gut Microbes ; 15(1): 2244720, 2023.
Article in English | MEDLINE | ID: mdl-37589280

ABSTRACT

Fermented foods and beverages are a significant source of dietary bacteria that enter the gastrointestinal (GI) tract. However, little is known about how these microbes survive and adapt to the small intestinal environment. Colony-forming units (CFU) enumeration and viability qPCR of Lacticaseibacillus rhamnosus CNCM I-3690 in the ileal effluent of 10 ileostomy subjects during 12-h post consumption of a dairy product fermented with this strain demonstrated the high level of survival of this strain during human small intestine passage. Metatranscriptome analyses revealed the in situ transcriptome of L. rhamnosus in the small intestine, which was contrasted with transcriptome data obtained from in vitro cultivation. These comparative analyses revealed substantial metabolic adaptations of L. rhamnosus during small intestine transit, including adjustments of carbohydrate metabolism, surface-protein expression, and translation machinery. The prominent presence of L. rhamnosus in the effluent samples did not elicit an appreciable effect on the composition of the endogenous small intestine microbiome, but significantly altered the ecosystem's overall activity profile, particularly of pathways associated with carbohydrate metabolism. Strikingly, two of the previously recognized gut-brain metabolic modules expressed in situ by L. rhamnosus (inositol degradation and glutamate synthesis II) are among the most dominantly enriched activities in the ecosystem's activity profile. This study establishes the survival capacity of L. rhamnosus in the human small intestine and highlights its functional adjustment in situ, which we postulate to play a role in the probiotic effects associated with this strain.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Microbiota , Probiotics , Humans , Ileum
6.
Front Nutr ; 10: 1204561, 2023.
Article in English | MEDLINE | ID: mdl-37485383

ABSTRACT

Background and aims: As our understanding of platelet activation in response to infections and/or inflammatory conditions is growing, it is becoming clearer that safe, yet efficacious, platelet-targeted phytochemicals could improve public health beyond the field of cardiovascular diseases. The phytonutrient sulforaphane shows promise for clinical use due to its effect on inflammatory pathways, favorable pharmacokinetic profile, and high bioavailability. The potential of sulforaphane to improve platelet functionality in impaired metabolic processes has however hardly been studied in humans. This study investigated the effects of broccoli sprout consumption, as a source of sulforaphane, on urinary 11-dehydro-thromboxane B2 (TXB2), a stable thromboxane metabolite used to monitor eicosanoid biosynthesis and response to antithrombotic therapy, in healthy participants exposed to caloric overload. Methods: In this double-blind, placebo-controlled, crossover trial 12 healthy participants were administered 16g of broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to challenge healthy homeostasis. Urine samples were collected during the study visits and analyzed for 11-dehydro-TXB2, sulforaphane and its metabolites. Genotyping was performed using Illumina GSA v3.0 DTCBooster. Results: Administration of broccoli sprouts before the caloric load reduced urinary 11-dehydro-TXB2 levels by 50% (p = 0.018). The amount of sulforaphane excreted in the urine during the study visits correlated negatively with 11-dehydro-TXB2 (rs = -0.377, p = 0.025). Participants carrying the polymorphic variant NAD(P)H dehydrogenase quinone 1 (NQO1*2) showed decreased excretion of sulforaphane (p = 0.035). Conclusion: Sulforaphane was shown to be effective in targeting platelet responsiveness after a single intake. Our results indicate an inverse causal relationship between sulforaphane and 11-dehydro-TXB2, which is unaffected by the concomitant intake of the metabolic challenge. 11-Dehydro-TXB2 shows promise as a non-invasive, sensitive, and suitable biomarker to investigate the effects of phytonutrients on platelet aggregation within hours. Clinical trial registration: [https://clinicaltrials.gov/], identifier [NCT05146804].

7.
Microbiome ; 11(1): 43, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36879297

ABSTRACT

BACKGROUND: The effects of fermented food consumption on the small intestine microbiome and its role on host homeostasis are largely uncharacterised as our knowledge on intestinal microbiota relies mainly on faecal samples analysis. We investigated changes in small intestinal microbial composition and functionality, short chain fatty acid (SCFA) profiles, and on gastro-intestinal (GI) permeability in ileostomy subjects upon the consumption of fermented milk products. RESULTS: We report the results from a randomised, cross-over, explorative study where 16 ileostomy subjects underwent 3, 2-week intervention periods. In each period, they consumed either milk fermented by Lacticaseibacillus rhamnosus CNCM I-3690, or milk fermented by Streptococcus thermophilus CNCM I-1630 and Lactobacillus delbrueckii subsp. bulgaricus CNCM I-1519, or a chemically acidified milk (placebo) daily. We performed metataxonomic, metatranscriptomic analysis, and SCFA profiling of ileostomy effluents as well as a sugar permeability test to investigate the microbiome impact of these interventions and their potential effect on mucosal barrier function. Consumption of the intervention products impacted the overall small intestinal microbiome composition and functionality, mainly due to the introduction of the product-derived bacteria that reach in several samples 50% of the total microbial community. The interventions did not affect the SCFA levels in ileostoma effluent, or gastro-intestinal permeability and the effects on the endogenous microbial community were negligible. The impact on microbiome composition was highly personalised, and we identified the poorly characterised bacterial family, Peptostreptococcaceae, to be positively associated with a low abundance of the ingested bacteria. Activity profiling of the microbiota revealed that carbon- versus amino acid-derived energy metabolism of the endogenous microbiome could be responsible for the individual-specific intervention effects on the small intestine microbiome composition and function, reflected also on urine microbial metabolites generated through proteolytic fermentation. CONCLUSIONS: The ingested bacteria are the main drivers of the intervention effect on the small intestinal microbiota composition. Their transient abundance level is highly personalised and influenced by the energy metabolism of the ecosystem that is reflected by its microbial composition ( http://www. CLINICALTRIALS: gov , ID NCT NCT02920294). Video Abstract.


Subject(s)
Body Fluids , Cultured Milk Products , Gastrointestinal Microbiome , Microbiota , Humans , Bacteria/genetics
8.
Nutrients ; 15(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36839304

ABSTRACT

BACKGROUND: Dietary fibers are subjected to saccharolytic fermentation by the gut microbiota, leading to the production of short chain fatty acids (SCFAs). SCFAs act as signaling molecules to different cells in the human body including skeletal muscle cells. The ability of SCFAs to induce multiple signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), may contribute to the redox balance, and thereby may be involved in glucose homeostasis. The aim of this study is to investigate whether SCFAs increase glucose uptake by upregulating the endogenous antioxidant glutathione (GSH) in C2C12 myotubes. METHODS: C2C12 myotubes were exposed to 1, 5, or 20 mM of single (acetate, propionate, or butyrate) or mixtures of SCFAs for 24 h. Cytotoxicity, glucose uptake, and intracellular GSH levels were measured. RESULTS: 20 mM of mixture but not separate SCFAs induced cytotoxicity. Exposure to a mixture of SCFAs at 5 mM increased glucose uptake in myotubes, while 20 mM of propionate, butyrate, and mixtures decreased glucose uptake. Exposure to single SCFAs increased GSH levels in myotubes; however, SCFAs did not prevent the menadione-induced decrease in glucose uptake in myotubes. CONCLUSIONS: The effect of SCFAs on modulating glucose uptake in myotubes is not associated with the effect on endogenous GSH levels.


Subject(s)
Butyrates , Propionates , Humans , Propionates/metabolism , Butyrates/pharmacology , Fatty Acids, Volatile/metabolism , Acetates , Muscle Fibers, Skeletal/metabolism , Glucose/metabolism
9.
Nutrients ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889917

ABSTRACT

The regulation of blood flow to peripheral muscles is crucial for proper skeletal muscle functioning and exercise performance. During exercise, increased mitochondrial oxidative phosphorylation leads to increased electron leakage and consequently induces an increase in ROS formation, contributing to DNA, lipid, and protein damage. Moreover, exercise may increase blood- and intramuscular inflammatory factors leading to a deterioration in endurance performance. The aim of this review is to investigate the potential mechanisms through which the polyphenol hesperidin could lead to enhanced exercise performance, namely improved endothelial function, reduced exercise-induced oxidative stress, and inflammation. We selected in vivo RCTs, animal studies, and in vitro studies in which hesperidin, its aglycone form hesperetin, hesperetin-metabolites, or orange juice are supplemented at any dosage and where the parameters related to endothelial function, oxidative stress, and/or inflammation have been measured. The results collected in this review show that hesperidin improves endothelial function (via increased NO availability), inhibits ROS production, decreases production and plasma levels of pro-inflammatory markers, and improves anaerobic exercise outcomes (e.g., power, speed, energy). For elite and recreational athletes, hesperidin could be used as an ergogenic aid to enhance muscle recovery between training sessions, optimize oxygen and nutrient supplies to the muscles, and improve anaerobic performance.


Subject(s)
Hesperidin , Performance-Enhancing Substances , Animals , Antioxidants/pharmacology , Hesperidin/metabolism , Hesperidin/pharmacology , Humans , Inflammation , Oxidative Stress , Performance-Enhancing Substances/pharmacology , Reactive Oxygen Species/metabolism
10.
Psychosom Med ; 84(3): 306-312, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34524263

ABSTRACT

OBJECTIVE: Fullness is a cardinal symptom in functional dyspepsia (FD). The use of real-time symptom assessment might provide more insight into factors, such as daily stress, that can influence fullness. Therefore, this study aimed to use the experience sampling method (a real-time, repeated-measurement method making use of repeated questionnaires available at random moments for a limited amount of time) to assess the association between stress and fullness in patients with FD and healthy controls (HCs). METHODS: Thirty-five patients with FD (25 female, mean age = 44.7 years) and 34 HCs (24 female, mean age = 44.1 years) completed the experience sampling method (a maximum of 10 random moments per day) for 7 consecutive days. Stress and fullness were rated on an 11-point Numeric Rating Scale. Data between patients with FD and HCs were statistically compared using a Student samples t test and linear mixed-effects models with repeated measures (level 1) nested within participants (level 2). RESULTS: Average fullness scores were 2.23 (standard error = 0.37) points higher in patients with FD compared with HCs (p < .001). Average stress scores were 1.37 (standard error = 0.30) points higher in patients with FD compared with HCs (p = .002).In FD, fullness scores increased with 0.14 for every 1-point increase in concurrent stress scores (p = .010). Fullness scores at t = 0 increased with 0.12 for every 1-point increase in stress scores at t = -1 (p = .019). T = 0 stress scores were not associated with change in t = -1 fullness scores. No associations between concurrent symptom scores were found for HCs. CONCLUSIONS: Concurrent and preceding stress scores are positively associated with fullness scores in patients with FD, but not in HCs. These findings indicate that increased levels of stress may precede feelings of fullness in patients with FD. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04204421.


Subject(s)
Dyspepsia , Adult , Dyspepsia/diagnosis , Ecological Momentary Assessment , Female , Health Status , Humans , Surveys and Questionnaires
11.
Am J Clin Nutr ; 114(3): 843-861, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34036315

ABSTRACT

Intestinal catheters have been used for decades in human nutrition, physiology, pharmacokinetics, and gut microbiome research, facilitating the delivery of compounds directly into the intestinal lumen or the aspiration of intestinal fluids in human subjects. Such research provides insights about (local) dynamic metabolic and other intestinal luminal processes, but working with catheters might pose challenges to biomedical researchers and clinicians. Here, we provide an overview of practical and technical aspects of applying naso- and oro-intestinal catheters for delivery of compounds and sampling luminal fluids from the jejunum, ileum, and colon in vivo. The recent literature was extensively reviewed, and combined with experiences and insights we gained through our own clinical trials. We included 60 studies that involved a total of 720 healthy subjects and 42 patients. Most of the studies investigated multiple intestinal regions (24 studies), followed by studies investigating only the jejunum (21 studies), ileum (13 studies), or colon (2 studies). The ileum and colon used to be relatively inaccessible regions in vivo. Custom-made state-of-the-art catheters are available with numerous options for the design, such as multiple lumina, side holes, and inflatable balloons for catheter progression or isolation of intestinal segments. These allow for multiple controlled sampling and compound delivery options in different intestinal regions. Intestinal catheters were often used for delivery (23 studies), sampling (10 studies), or both (27 studies). Sampling speed decreased with increasing distance from the sampling syringe to the specific intestinal segment (i.e., speed highest in duodenum, lowest in ileum/colon). No serious adverse events were reported in the literature, and a dropout rate of around 10% was found for these types of studies. This review is highly relevant for researchers who are active in various research areas and want to expand their research with the use of intestinal catheters in humans in vivo.


Subject(s)
Catheterization/methods , Intestines/physiology , Research Design , Catheterization/instrumentation , Humans
12.
Eur J Nutr ; 60(6): 2923-2947, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33559026

ABSTRACT

PURPOSE: Taste receptors are expressed throughout the gastrointestinal tract. The activation of post-oral taste receptors using tastants could provide a non-invasive treatment option in combating the obesity epidemic. The aim of this review was to examine the effect of post-oral delivery of non-caloric tastants on eating behavior reflected by primary outcome energy intake and secondary outcomes GI symptoms and perceptions and potential underlying mechanisms. This review was conducted according to the PRISMA guidelines for systematic reviews. METHODS: A systematic literature search of the Cochrane, PubMed, Embase, and Medline databases was performed. This systematic review and meta-analysis was registered in the PROSPERO database on 26 February 2020 (ID: CRD42020171182). Two researchers independently screened 11,912 articles and extracted information from 19 articles. If at least two studies investigated the effect of the same taste compound on primary outcome energy intake, a meta-analysis was performed to determine pooled effect sizes. RESULTS: Nineteen papers including healthy volunteers were included. In the 19 papers analyzed, effects of various tastants were investigated in healthy volunteers. Most extensively investigated were bitter tastants. The meta-analysis of effects of bitter tastants showed a significant reduction in energy intake of 54.62 kcal (95% CI - 78.54 to - 30.69, p = 0.0014). CONCLUSIONS: Bitter stimuli are most potent to influence eating behavior. Energy intake decreased after post-oral delivery of bitter tastants. This highlights the potential of a preventive role of bitter tastants in battling the obesity epidemic.


Subject(s)
Energy Intake , Gastrointestinal Tract , Feeding Behavior , Humans , Obesity , Taste
13.
J Int Soc Sports Nutr ; 18(1): 2, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407631

ABSTRACT

BACKGROUND: Nutritional supplementation is commonly used by athletes to improve their exercise performance. Previous studies demonstrated that citrus flavonoid extract (CFE) supplementation may be an effective strategy to improve exercise performance in male athletes. Yet, no conclusive research has been performed to investigate the effect of chronic CFE supplementation on high-intensity exercise performance under anaerobic conditions. Therefore, the aim of the study was to assess whether CFE supplementation in daily dosages of 400 and 500 mg for a period of 4 and 8 weeks improves anaerobic exercise capacity. METHODS: A randomized, double-blind, placebo controlled, parallel clinical study was conducted in 92 moderately trained healthy men and women. Subjects were randomized to receive 400 mg of CFE (n = 30), 500 mg of CFE (n = 31) or placebo (n = 31) daily, for 8 consecutive weeks. The Wingate anaerobic test was used to assess anaerobic exercise capacity and power output at baseline, after 4 weeks and after 8 weeks. RESULTS: After 4 weeks supplementation, average power output significantly increased in the 400 mg group (Estimated difference [ED] = 38.2 W [18.0, 58.3]; p < 0.001; effect size [ES] = 0.27) and in the 500 mg group (ED = 21.2 W [0.91, 41.4]; p = 0.041; ES = 0.15) compared to placebo. The 5 s peak power output was also increased in the 400 mg group (ED = 53.6 [9.96, 97.2]; p = 0.017; ES = 0.25) after 4 weeks compared to placebo. After 8 weeks of supplementation, average power output was significantly improved in the group receiving 400 mg of CFE (ED = 31.6 [8.33, 54.8]; p = 0.008; ES = 0.22) compared to placebo. CONCLUSION: These results demonstrate that CFE supplementation improved anaerobic capacity and peak power during high intensity exercise in moderately trained individuals. Further research is needed to identify the underlying mechanisms that are affected by CFE supplementation. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT03044444 ). Registered 7 February 2017.


Subject(s)
Anaerobiosis/drug effects , Citrus/chemistry , Dietary Supplements , Flavonoids/pharmacology , Physical Endurance/drug effects , Plant Extracts/pharmacology , Adult , Anaerobiosis/physiology , Athletes , Double-Blind Method , Exercise/physiology , Female , Flavonoids/administration & dosage , Hesperidin/administration & dosage , Hesperidin/pharmacology , Humans , Male , Oxygen Consumption/physiology , Physical Endurance/physiology , Placebos/administration & dosage , Plant Extracts/administration & dosage , Sports Nutritional Physiological Phenomena , Time Factors , Young Adult
14.
Front Pharmacol ; 12: 806002, 2021.
Article in English | MEDLINE | ID: mdl-34975501

ABSTRACT

Introduction: The world population is ageing, resulting in increased prevalence of age-related comorbidities and healthcare costs. Limited data are available on intestinal health in elderly populations. Structural and functional changes, including altered visceroperception, may lead to altered bowel habits and abdominal symptoms in healthy individuals and irritable bowel syndrome (IBS) patients. Our aim was to explore age-related changes in gastrointestinal symptoms and underlying mechanisms. Methods: In total, 780 subjects (IBS patients n = 463, healthy subjects n = 317) from two separate studies were included. Subjects were divided into different age groups ranging from young adult to elderly. Demographics and gastrointestinal symptom scores were collected from all participants using validated questionnaires. A subset of 233 IBS patients and 103 controls underwent a rectal barostat procedure to assess visceral hypersensitivity. Sigmoid biopsies were obtained from 10 healthy young adults and 10 healthy elderly. Expression of the visceral pain-associated receptors transient receptor potential (TRP) Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) genes were investigated by quantitative RT-PCR and immunofluorescence. Results: Both elderly IBS and healthy individuals showed significantly lower scores for abdominal pain (p < 0.001) and indigestion (p < 0.05) as compared to respective young adults. Visceral hypersensitivity was less common in elderly than young IBS patients (p < 0.001). Relative TRPA1 gene transcription, as well as TRPA1 and TRPV1 immunoreactivity were significantly lower in healthy elderly versus healthy young adults (p < 0.05). Conclusions: Our findings show an age-related decrease in abdominal pain perception. This may in part be related to decreased TRPA1 and/or TRPV1 receptor expression. Further studies are needed to reveal precise underlying mechanisms and the associations with intestinal health.

15.
Br J Nutr ; 125(1): 92-100, 2021 01 14.
Article in English | MEDLINE | ID: mdl-32660667

ABSTRACT

Stimulation of gastrointestinal taste receptors affects eating behaviour. Intraduodenal infusion of tastants leads to increased satiation and reduced food intake, whereas intraileal infusion of tastants does not affect eating behaviour. Currently, it is unknown whether oral- or intragastric administration of tastants induces a larger effect on eating behaviour. This study investigated the effects of oral- and/or intragastric administration of quinine on food intake, appetite sensations and heart rate variability (HRV). In a blinded randomised crossover trial, thirty-two healthy volunteers participated in four interventions with a 1-week washout: oral placebo and intragastric placebo (OPGP), oral quinine and intragastric placebo (OQGP), oral placebo and intragastric quinine (OPGQ) and oral quinine and intragastric quinine (OQGQ). On test days, 150 min after a standardised breakfast, subjects ingested a capsule containing quinine or placebo and were sham-fed a mixture of quinine or placebo orally. At 50 min after intervention, subjects received an ad libitum meal to measure food intake. Visual analogue scales for appetite sensations were collected, and HRV measurements were performed at regular intervals. Oral and/or intragastric delivery of the bitter tastant quinine did not affect food intake (OPGP: 3273·6 (sem 131·8) kJ, OQGP: 3072·7 (sem 132·2) kJ, OPGQ: 3289·0 (sem 132·6) kJ and OQGQ: 3204·1 (sem 133·1) kJ, P = 0·069). Desire to eat and hunger decreased after OQGP and OPGQ compared with OPGP (P < 0·001 and P < 0·05, respectively), whereas satiation, fullness and HRV did not differ between interventions. In conclusion, sole oral sham feeding with and sole intragastric delivery of quinine decreased desire to eat and hunger, without affecting food intake, satiation, fullness or HRV.


Subject(s)
Appetite/drug effects , Aversive Agents/administration & dosage , Eating/drug effects , Quinine/administration & dosage , Sensation/drug effects , Administration, Oral , Adolescent , Adult , Aged , Breakfast , Cross-Over Studies , Duodenum , Feeding Behavior/drug effects , Female , Healthy Volunteers , Heart Rate/drug effects , Humans , Hunger/drug effects , Ileum , Infusions, Parenteral , Male , Middle Aged , Satiation/drug effects , Single-Blind Method , Young Adult
16.
Sci Rep ; 10(1): 475, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949225

ABSTRACT

Animal studies have shown that intestinal barrier function is compromised with aging. We aimed to assess the effects of aging on intestinal barrier function in humans in vivo and ex vivo. In this cross-sectional study, healthy subjects and subjects with irritable bowel syndrome (IBS) of older (65-75 years) and young adult age (18-40 years) were compared. In vivo gastrointestinal site-specific permeability was assessed by a multi-sugar test, taking into account potential confounders. Sigmoid biopsies were collected from subgroups of healthy young adults and elderly for ex vivo Ussing chamber experiments, gene transcription of barrier-related genes and staining of junctional proteins. No significant differences between healthy young adults and elderly were found for small intestinal, colonic and whole gut permeability (P ≥ 0.142). In IBS patients, gastroduodenal and colonic permeability did not differ significantly (P ≥ 0.400), but small intestinal and whole gut permeability were higher in elderly versus young adults (P ≤ 0.009), mainly driven by the IBS-diarrhea subtype. Ussing chamber experiments with or without stressor (P ≥ 0.052), and relative expression of intestinal barrier-related genes (P ≥ 0.264) showed no significant differences between healthy elderly and young adults, as confirmed by immunofluorescent stainings. Overall, the functional capacity of the intestinal barrier is maintained in elderly.


Subject(s)
Aging , Cell Membrane Permeability , Intestinal Mucosa/physiology , Intestine, Small/physiology , Irritable Bowel Syndrome/physiopathology , Adult , Aged , Case-Control Studies , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Male , Middle Aged , Prognosis , Young Adult
17.
Nutrients ; 11(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547291

ABSTRACT

Aging is accompanied with increased frailty and comorbidities, which is potentially associated with microbiome perturbations. Dietary fibers could contribute to healthy aging by beneficially impacting gut microbiota and metabolite profiles. We aimed to compare young adults with elderly and investigate the effect of pectin supplementation on fecal microbiota composition, short chain fatty acids (SCFAs), and exhaled volatile organic compounds (VOCs) while using a randomized, double-blind, placebo-controlled parallel design. Fifty-two young adults and 48 elderly consumed 15 g/day sugar beet pectin or maltodextrin for four weeks. Fecal and exhaled breath samples were collected before and after the intervention period. Fecal samples were used for microbiota profiling by 16S rRNA gene amplicon sequencing, and for analysis of SCFAs by gas chromatography (GC). Breath was used for VOC analysis by GC-tof-MS. Young adults and elderly showed similar fecal SCFA and exhaled VOC profiles. Additionally, fecal microbiota profiles were similar, with five genera significantly different in relative abundance. Pectin supplementation did not significantly alter fecal microbiota, SCFA or exhaled VOC profiles in elderly or young adults. In conclusion, aside from some minor differences in microbial composition, healthy elderly and young adults showed comparable fecal microbiota composition and activity, which were not altered by pectin supplementation.


Subject(s)
Beta vulgaris , Dietary Supplements , Fatty Acids, Volatile/analysis , Gastrointestinal Microbiome/drug effects , Pectins/administration & dosage , Volatile Organic Compounds/analysis , Aged , Breath Tests , Double-Blind Method , Exhalation , Feces/chemistry , Feces/microbiology , Female , Healthy Volunteers , Humans , Male , Young Adult
18.
Nutrients ; 11(7)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324040

ABSTRACT

Intestinal barrier function is suggested to decrease with aging and may be improved by pectin intake. The aim of this study was to investigate the effects of four weeks pectin supplementation on gastrointestinal barrier function in vivo and ex vivo in different age groups. In a randomized, double-blind, placebo-controlled, parallel study, 52 healthy young adults (18-40 years) and 48 healthy elderly (65-75 years) received 15 g/day pectin or placebo for four weeks. Pre- and post-intervention, in vivo gastrointestinal permeability by a multisugar test, and defense capacity in mucosal samples were assessed. Sigmoid biopsies were collected post-intervention from subgroups for Ussing chamber experiments and gene transcription of barrier-related genes. Pectin intervention did not affect in vivo gastroduodenal, small intestinal, colonic, and whole gut permeability in young adults nor in elderly (p ≥ 0.130). Salivary and fecal sIgA and serum IgA were not significantly different between pectin versus placebo in both age groups (p ≥ 0.128). In both young adults and elderly, no differences in transepithelial electrical resistance and fluorescein flux (p ≥ 0.164) and relative expression of genes analyzed (p ≥ 0.222) were found between pectin versus placebo. In conclusion, intestinal barrier function was not affected by four weeks pectin supplementation neither in healthy young adults nor in healthy elderly.


Subject(s)
Aging , Functional Food , Intestinal Mucosa/drug effects , Nutritional Physiological Phenomena , Pectins/pharmacology , Adolescent , Adult , Aged , Dietary Supplements , Female , Gene Expression Regulation/drug effects , Humans , Male , Permeability , Young Adult
19.
Nutr Res ; 63: 86-94, 2019 03.
Article in English | MEDLINE | ID: mdl-30824401

ABSTRACT

The objective of this study was to investigate the efficacy of lipid emulsions encapsulated in calcium-alginate beads in reducing food intake and appetite sensations. These emulsion-alginate beads were ingested in a yogurt (active) and compared to an equienergetic yogurt containing nonencapsulated nutrients with comparable sensory properties (control) in a randomized placebo-controlled trial with crossover design. Thirty-three healthy overweight volunteers (mean age: 43 years; body mass index: 27.7 kg/m2; 14 male) received the 2 treatments. Test days started with a standardized small breakfast (t = 0) followed by an active or control yogurt (t = 90 minutes). Appetite sensations and gastrointestinal symptoms were monitored prior to and after consumption of the yogurt, and food intake was measured during ad libitum pasta meal consumption (t = 210 minutes). The hypothesis for this study was that delayed release of encapsulated lipids suppresses appetite sensations and reduces food intake. Food intake was significantly reduced with 51 ±â€¯20 kcal (213 ± 84 kJ) (P = .016) after intake of the active yogurt (770 ±â€¯38 kcal (3222 ± 159 kJ)) compared to the control (821 ±â€¯40 kcal (3435 ± 167 kJ)). The approach that we chose is promising to reduce food intake and could contribute to the development of an easy-to-use product for weight management.


Subject(s)
Alginates/administration & dosage , Appetite/drug effects , Eating/drug effects , Lipids/administration & dosage , Overweight/drug therapy , Adolescent , Adult , Aged , Cross-Over Studies , Drug Compounding , Drug Liberation , Emulsions/administration & dosage , Female , Humans , Male , Middle Aged , Safflower Oil/administration & dosage , Yogurt , Young Adult
20.
Nutrients ; 11(2)2019 Feb 23.
Article in English | MEDLINE | ID: mdl-30813412

ABSTRACT

Intraduodenal activity of taste receptors reduces food intake. Taste receptors are expressed throughout the entire gastrointestinal tract. Currently, there are no data available on the effects of distal taste receptor activation. In this study, we investigate the effect of intraduodenal and/or intraileal activation of taste receptors on food intake and satiety. In a single-blind randomized crossover trial, fourteen participants were intubated with a naso-duodenal-ileal catheter and received four infusion regimens: duodenal placebo and ileal placebo (DPIP), duodenal tastants and ileal placebo (DTIP), duodenal placebo and ileal tastants (DPIT), duodenal tastants and ileal tastants (DTIT). Fifteen minutes after cessation of infusion, subjects received an ad libitum meal to measure food intake. Visual analog scale scores for satiety feelings were collected at regular intervals. No differences in food intake were observed between the various interventions (DPIP: 786.6 ± 79.2 Kcal, DTIP: 803.3 ± 69.0 Kcal, DPIT: 814.7 ± 77.3 Kcal, DTIT: 834.8 ± 59.2 Kcal, p = 0.59). No differences in satiety feelings were observed. Intestinal infusion of tastants using a naso-duodenal-ileal catheter did not influence food intake or satiety feelings. Possibly, the burden of the four-day naso-duodenal-ileal intubation masked a small effect that tastants might have on food intake and satiety.


Subject(s)
Flavoring Agents/administration & dosage , Flavoring Agents/pharmacology , Satiation/drug effects , Taste Perception/drug effects , Adolescent , Adult , Duodenum , Eating , Female , Humans , Ileum , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...