Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 39(39): 5548-5556, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34419306

ABSTRACT

INTRODUCTION: Enterotoxigenic Escherichia coli (ETEC) is a common cause of infectious diarrhoea and a leading cause of morbidity and mortality in children living in resource-limited settings. It is also the leading cause of travellers' diarrhoea among civilian and military travellers. Its dual importance in global public health and travel medicine highlights the need for an effective vaccine. ETEC express colonization factors (CFs) that mediate adherence to the small intestine. An epidemiologically prevalent CF is coli surface antigen 6 (CS6). We assessed the safety and immunogenicity of a CS6-targeted candidate vaccine, CssBA, co-administered intramuscularly with the double-mutant heat-labile enterotoxin, dmLT [LT(R192G/L211A)]. METHODS: This was an open-label trial. Fifty subjects received three intramuscular injections (Days 1, 22 and 43) of CssBA alone (5 µg), dmLT alone (0.1 µg) or CssBA (5, 15, 45 µg) + dmLT (0.1 and 0.5 µg). Subjects were actively monitored for adverse events for 28 days following the third vaccination. Antibody responses (IgG and IgA) were characterized in the serum and from lymphocyte supernatants (ALS) to CS6 and the native ETEC heat labile enterotoxin, LT. RESULTS: Across all dose cohorts, the vaccine was safe and well-tolerated with no vaccine-related severe or serious adverse events. Among vaccine-related adverse events, a majority (98%) were mild with 79% being short-lived vaccine site reactions. Robust antibody responses were induced in a dose-dependent manner with a clear dmLT adjuvant effect. Response rates in subjects receiving 45 µg CssBA and 0.5 µg dmLT ranged from 50 to 100% across assays. CONCLUSION: This is the first study to demonstrate the safety and immunogenicity of CssBA and/or dmLT administered intramuscularly. Co-administration of the two components induced robust immune responses to CS6 and LT, paving the way for future studies to evaluate the efficacy of this vaccine target and development of a multivalent, subunit ETEC vaccine.


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Antibodies, Bacterial , Child , Enterotoxins , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/genetics , Escherichia coli Vaccines/adverse effects , Hot Temperature , Humans , Vaccines, Subunit
2.
PLoS One ; 15(12): e0239888, 2020.
Article in English | MEDLINE | ID: mdl-33264302

ABSTRACT

BACKGROUND: Human challenge models for enterotoxigenic Escherichia coli (ETEC) facilitate vaccine down-selection. The B7A (O148:H28 CS6+LT+ST+) strain is important for vaccine development. We sought to refine the B7A model by identifying a dose and fasting regimen consistently inducing moderate-severe diarrhea. METHODS: An initial cohort of 28 subjects was randomized (1:1:1:1) to receive B7A following an overnight fast at doses of 108 or 109 colony forming units (cfu) or a 90-minute fast at doses of 109 or 1010 cfu. A second cohort included naïve and rechallenged subjects who had moderate-severe diarrhea and were given the target regimen. Immune responses to important ETEC antigens were assessed. RESULTS: Among subjects receiving 108 cfu of B7A, overnight fast, or 109 cfu, 90-minute fast, 42.9% (3/7) had moderate-severe diarrhea. Higher attack rates (71.4%; 5/7) occurred in subjects receiving 109 cfu, overnight fast, or 1010 cfu, 90-minute fast. Upon rechallenge with 109 cfu of B7A, overnight fast, 5/11 (45.5%) had moderate-severe diarrhea; the attack rate among concurrently challenge naïve subjects was 57.9% (11/19). Anti-CS6, O148 LPS and LT responses were modest across all groups. CONCLUSIONS: An overnight fast enabled a reduction in the B7A inoculum dose; however, the attack rate was inconsistent and protection upon rechallenge was minimal.


Subject(s)
Antigens, Bacterial/analysis , Diarrhea/etiology , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Proteins/analysis , Escherichia coli Vaccines , Adolescent , Adult , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Load , Bacterial Toxins/immunology , Ciprofloxacin/therapeutic use , Diarrhea/microbiology , Diarrhea/therapy , Dose-Response Relationship, Immunologic , Enterotoxigenic Escherichia coli/immunology , Enterotoxigenic Escherichia coli/isolation & purification , Enterotoxins/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/immunology , Fasting , Feces/microbiology , Female , Fluid Therapy , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Lipopolysaccharides/immunology , Male , Middle Aged , Random Allocation , Time Factors , Young Adult
3.
PLoS One ; 10(6): e0129623, 2015.
Article in English | MEDLINE | ID: mdl-26070149

ABSTRACT

Malaria, the disease caused by Plasmodium parasites, remains a major global health burden. The liver stage of Plasmodium falciparum infection is a leading target for immunological and pharmacological interventions. Therefore, novel approaches providing specific detection and isolation of live P. falciparum exoerythrocytic forms (EEFs) are warranted. Utilizing a recently generated parasite strain expressing green fluorescent protein (GFP) we established a method which, allows for detection and isolation of developing live P. falciparum liver stages by flow cytometry. Using this technique we compared the susceptibility of five immortalized human hepatocyte cell lines and primary hepatocyte cultures from three donors to infection by P. falciparum sporozoites. Here, we show that EEFs can be detected and isolated from in vitro infected cultures of the HC-04 cell line and primary human hepatocytes. We confirmed the presence of developing parasites in sorted live human hepatocytes and characterized their morphology by fluorescence microscopy. Finally, we validated the practical applications of our approach by re-examining the importance of host ligand CD81 for hepatocyte infection by P. falciparum sporozoites in vitro and assessment of the inhibitory activity of anti-sporozoite antibodies. This methodology provides us with the tools to study both, the basic biology of the P. falciparum liver stage and the effects of host-derived factors on the development of P. falciparum EEFs.


Subject(s)
Flow Cytometry , Liver/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Cell Line , Cell Line, Transformed , Cells, Cultured , Flow Cytometry/methods , Gene Expression , Genes, Reporter , Hepatocytes/metabolism , Hepatocytes/parasitology , Humans , Life Cycle Stages , Sporozoites , Tetraspanin 28/metabolism
4.
PLoS One ; 8(9): e75321, 2013.
Article in English | MEDLINE | ID: mdl-24086507

ABSTRACT

Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Enzymologic/physiology , Genes, MHC Class I/immunology , Hepatocytes/immunology , Malaria/immunology , Plasmodium/growth & development , DNA Primers/genetics , Genes, MHC Class I/genetics , Hepatocytes/parasitology , Humans , Malaria/metabolism , Malaria Vaccines/immunology , Protozoan Proteins/metabolism , Real-Time Polymerase Chain Reaction , Reproduction/physiology , Reverse Transcriptase Polymerase Chain Reaction
5.
PLoS One ; 8(9): e72130, 2013.
Article in English | MEDLINE | ID: mdl-24019865

ABSTRACT

The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. Antibiotic treated aseptic mosquitoes mounted molecular immune responses representing a variety of immune functions upon P. falciparum infection. Among other immune factors, our analysis uncovered a serine protease inhibitor (SRPN7) and Clip-domain serine protease (CLIPC2) that were transcriptionally induced in the midgut upon P. falciparum infection, independent of bacteria. We also showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Further exploration of this anti-Plasmodium defense will help clarify determinants of immune specificity in the mosquito, and expose potential gene and/or protein targets for malaria intervention strategies based on targeting the parasite in the mosquito vector.


Subject(s)
Anopheles/parasitology , Bacterial Physiological Phenomena , Malaria, Falciparum/immunology , Plasmodium falciparum/physiology , Animals , Anopheles/immunology , Gene Silencing , Genetic Predisposition to Disease , Insect Vectors , Malaria, Falciparum/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...