Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39001333

ABSTRACT

OBJECTIVES: The purpose of this study was to develop a deep learning algorithm capable of diagnosing radicular cysts in the lower jaw on panoramic radiographs. MATERIALS AND METHODS: In this study, we conducted a comprehensive analysis of 138 radicular cysts and 100 normal panoramic radiographs collected from 2013 to 2023 at Clinical Hospital Dubrava. The images were annotated by a team comprising a radiologist and a maxillofacial surgeon, utilizing the GNU Image Manipulation Program. Furthermore, the dataset was enriched through the application of various augmentation techniques to improve its robustness. The evaluation of the algorithm's performance and a deep dive into its mechanics were achieved using performance metrics and EigenCAM maps. RESULTS: In the task of diagnosing radicular cysts, the initial algorithm performance-without the use of augmentation techniques-yielded the following scores: precision at 85.8%, recall at 66.7%, mean average precision (mAP)@50 threshold at 70.9%, and mAP@50-95 thresholds at 60.2%. The introduction of image augmentation techniques led to the precision of 74%, recall of 77.8%, mAP@50 threshold to 89.6%, and mAP@50-95 thresholds of 71.7, respectively. Also, the precision and recall were transformed into F1 scores to provide a balanced evaluation of model performance. The weighted function of these metrics determined the overall efficacy of our models. In our evaluation, non-augmented data achieved F1 scores of 0.750, while augmented data achieved slightly higher scores of 0.758. CONCLUSION: Our study underscores the pivotal role that deep learning is poised to play in the future of oral and maxillofacial radiology. Furthermore, the algorithm developed through this research demonstrates a capability to diagnose radicular cysts accurately, heralding a significant advancement in the field.

2.
Medicina (Kaunas) ; 59(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38138241

ABSTRACT

Background and Objectives: The purpose of this study was to develop and evaluate a deep learning model capable of autonomously detecting and segmenting radiolucent lesions in the lower jaw by utilizing You Only Look Once (YOLO) v8. Materials and Methods: This study involved the analysis of 226 lesions present in panoramic radiographs captured between 2013 and 2023 at the Clinical Hospital Dubrava and the School of Dental Medicine, University of Zagreb. Panoramic radiographs included radiolucent lesions such as radicular cysts, ameloblastomas, odontogenic keratocysts (OKC), dentigerous cysts and residual cysts. To enhance the database, we applied techniques such as translation, scaling, rotation, horizontal flipping and mosaic effects. We have employed the deep neural network to tackle our detection and segmentation objectives. Also, to improve our model's generalization capabilities, we conducted five-fold cross-validation. The assessment of the model's performance was carried out through metrics like Intersection over Union (IoU), precision, recall and mean average precision (mAP)@50 and mAP@50-95. Results: In the detection task, the precision, recall, mAP@50 and mAP@50-95 scores without augmentation were recorded at 91.8%, 57.1%, 75.8% and 47.3%, while, with augmentation, were 95.2%, 94.4%, 97.5% and 68.7%, respectively. Similarly, in the segmentation task, the precision, recall, mAP@50 and mAP@50-95 values achieved without augmentation were 76%, 75.5%, 75.1% and 48.3%, respectively. Augmentation techniques led to an improvement of these scores to 100%, 94.5%, 96.6% and 72.2%. Conclusions: Our study confirmed that the model developed using the advanced YOLOv8 has the remarkable capability to automatically detect and segment radiolucent lesions in the mandible. With its continual evolution and integration into various medical fields, the deep learning model holds the potential to revolutionize patient care.


Subject(s)
Mandible , Odontogenic Cysts , Humans , Radiography, Panoramic/methods , Mandible/pathology , Neural Networks, Computer , Odontogenic Cysts/pathology , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL
...