Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998176

ABSTRACT

In the theoretical treatment of crystallization, it is commonly assumed that the relaxation processes of a liquid proceed quickly as compared to crystal nucleation and growth processes. Actually, it is supposed that a liquid is always located in the metastable state corresponding to the current values of pressure and temperature. However, near and below the glass transition temperature, Tg, this condition is commonly not fulfilled. In such cases, in the treatment of crystallization, deviations in the state of the liquid from the respective metastable equilibrium state have to be accounted for when determining the kinetic coefficients governing the crystallization kinetics, the thermodynamic driving force of crystallization, and the surface tension of the aggregates of the newly evolving crystal phase including the surface tension of critical clusters considerably affecting the crystal nucleation rate. These factors may greatly influence the course of the overall crystallization process. A theoretical analysis of the resulting effects is given in the present paper by numerical solutions of the J(ohnson)-M(ehl)-A(vrami)-K(olmogorov) equation employed as the tool to model the overall crystallization kinetics and by analytical estimates of the crystallization peak temperatures in terms of the dependence on cooling and heating rates. The results are shown to be in good agreement with the experimental data. Possible extensions of the theory are anticipated and will be explored in future analysis.

2.
Entropy (Basel) ; 25(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36832695

ABSTRACT

We consider the process of formation and growth of clusters of a new phase in segregation processes in solid or liquid solutions in an open system when segregating particles are added continuously to it with a given rate of input fluxes, Φ. As shown here, the value of the input flux significantly affects the number of supercritical clusters formed, their growth kinetics, and, in particular, the coarsening behavior in the late stages of the process. The detailed specification of the respective dependencies is the aim of the present analysis, which combines numerical computations with an analytical treatment of the obtained results. In particular, a treatment of the coarsening kinetics is developed, allowing a description of the development of the number of clusters and their average sizes in the late stages of the segregation processes in open systems, which goes beyond the scope of the classical Lifshitz, Slezov and Wagner theory. As is also shown, in its basic ingredients, this approach supplies us with a general tool for the theoretical description of Ostwald ripening in open systems, or systems where the boundary conditions, like temperature or pressure, vary with time. Having this method at one's disposal supplies us with the possibility that conditions can be theoretically tested, leading to cluster size distributions that are most appropriate for desired applications.

3.
Entropy (Basel) ; 22(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33286867

ABSTRACT

In the application of classical nucleation theory (CNT) and all other theoretical models of crystallization of liquids and glasses it is always assumed that nucleation proceeds only after the supercooled liquid or the glass have completed structural relaxation processes towards the metastable equilibrium state. Only employing such an assumption, the thermodynamic driving force of crystallization and the surface tension can be determined in the way it is commonly performed. The present paper is devoted to the theoretical treatment of a different situation, when nucleation proceeds concomitantly with structural relaxation. To treat the nucleation kinetics theoretically for such cases, we need adequate expressions for the thermodynamic driving force and the surface tension accounting for the contributions caused by the deviation of the supercooled liquid from metastable equilibrium. In the present paper, such relations are derived. They are expressed via deviations of structural order parameters from their equilibrium values. Relaxation processes result in changes of the structural order parameters with time. As a consequence, the thermodynamic driving force and surface tension, and basic characteristics of crystal nucleation, such as the work of critical cluster formation and the steady-state nucleation rate, also become time-dependent. We show that this scenario may be realized in the vicinity and below the glass transition temperature, and it may occur only if diffusion (controlling nucleation) and viscosity (controlling the alpha-relaxation process) in the liquid decouple. Analytical estimates are illustrated and confirmed by numerical computations for a model system. The theory is successfully applied to the interpretation of experimental data. Several further consequences of this newly developed theoretical treatment are discussed in detail. In line with our previous investigations, we reconfirm that only when the characteristic times of structural relaxation are of similar order of magnitude or longer than the characteristic times of crystal nucleation, elastic stresses evolving in nucleation may significantly affect this process. Advancing the methods of theoretical analysis of elastic stress effects on nucleation, for the first time expressions are derived for the dependence of the surface tension of critical crystallites on elastic stresses. As the result, a comprehensive theoretical description of crystal nucleation accounting appropriately for the effects of deviations of the liquid from the metastable states and of relaxation on crystal nucleation of glass-forming liquids, including the effect of simultaneous stress evolution and stress relaxation on nucleation, is now available. As one of its applications, this theoretical treatment provides a new tool for the explanation of the low-temperature anomaly in nucleation in silicate and polymer glasses (the so-called "breakdown" of CNT at temperatures below the temperature of the maximum steady-state nucleation rate). We show that this anomaly results from much more complex features of crystal nucleation in glasses caused by deviations from metastable equilibrium (resulting in changes of the thermodynamic driving force, the surface tension, and the work of critical cluster formation, in the necessity to account of structural relaxation and stress effects) than assumed so far. If these effects are properly accounted for, then CNT appropriately describes both the initial, the intermediate, and the final states of crystal nucleation.

4.
Entropy (Basel) ; 20(2)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-33265194

ABSTRACT

A critical analysis of possible (including some newly proposed) definitions of the vitreous state and the glass transition is performed and an overview of kinetic criteria of vitrification is presented. On the basis of these results, recent controversial discussions on the possible values of the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero absolute temperature is in disagreement with the absolute majority of experimental and theoretical investigations of this process and the nature of the vitreous state. This conclusion is illustrated by model computations. In addition to the main conclusion derived from these computations, they are employed as a test for several suggestions concerning the behavior of thermodynamic coefficients in the glass transition range. Further, a brief review is given on possible ways of resolving the Kauzmann paradox and its implications with respect to the validity of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its consequences does the Kauzmann paradox result in contradictions with any basic laws of nature. Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as suggested by Kauzmann) or a conventional (and not an ideal) glass transition. Some further so far widely unexplored directions of research on the interplay between crystallization and glass transition are anticipated, in which entropy may play-beyond the topics widely discussed and reviewed here-a major role.

5.
Entropy (Basel) ; 20(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-33265793

ABSTRACT

A response is given to a comment of Zanotto and Mauro on our paper published in Entropy 20, 103 (2018). Our arguments presented in this paper are widely ignored by them, and no new considerations are outlined in the comment, which would require a revision of our conclusions. For this reason, we restrict ourselves here to a brief response, supplementing it by some additional arguments in favor of our point of view not included in our above-cited paper.

6.
J Chem Phys ; 138(3): 034507, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23343285

ABSTRACT

In a preceding paper [J. W. P. Schmelzer, J. Chem. Phys. 136, 074512 (2012)], a general kinetic criterion of glass formation has been advanced allowing one to determine theoretically the dependence of the glass transition temperature on cooling and heating rates (or similarly on the rate of change of any appropriate control parameter determining the transition of a stable or metastable equilibrium system into a frozen-in, non-equilibrium state of the system, a glass). In the present paper, this criterion is employed in order to develop analytical expressions for the dependence of the upper and lower boundaries and of the width of the glass transition interval on the rate of change of the external control parameters. It is shown, in addition, that the width of the glass transition range is strongly correlated with the entropy production at the glass transition temperature. The analytical results are supplemented by numerical computations. Analytical results and numerical computations as well as existing experimental data are shown to be in good agreement.

7.
J Chem Phys ; 136(12): 124502, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22462869

ABSTRACT

In a recent analysis [J. W. P. Schmelzer and I. Gutzow, J. Chem. Phys. 125, 184511 (2006)] it was shown for the first time that--in contrast to earlier belief arising from the works of Prigogine and Defay [Chemical Thermodynamics (Longman, London, 1954), Chap. 19; The first French edition of this book was published in 1950] and Davies and Jones [Adv. Phys. 2, 370 (1953); and Proc. R. Soc. London, Ser. A 217, 26 (1953)]--a satisfactory theoretical interpretation of the experimentally observed values of the so-called Prigogine-Defay ratio Π, being a combination of jumps of thermodynamic coefficients at glass transition, can be given employing only one structural order parameter. According to this analysis, this ratio has to be, in full agreement with experimental findings, larger than one (Π > 1). Its particular value depends both on the thermodynamic properties of the system under consideration and on cooling and heating rates. Based on above-mentioned analysis, latter dependence on cooling rates has been studied in detail in another own preceding paper [T. V. Tropin, J. W. P. Schmelzer, and C. Schick, J. Non-Cryst. Solids 357, 1303 (2011)]. In the present analysis, an alternative general method of determination of the Prigogine-Defay ratio is outlined, allowing one to determine this ratio having at ones disposal the generalized equation of state of the glass-forming melts under consideration and, in particular, the knowledge of the equilibrium properties of the melts in the glass transformation range. Employing, as an illustration of the method, a particular model for the description of glass-forming melts, theoretical estimates are given for this ratio being, again, in good agreement with experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...