Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(23): 10259-10269, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35649281

ABSTRACT

The metal-insulator transition driven by electronic correlations is one of the most fundamental concepts in condensed matter. In mixed-valence compounds, this transition is often accompanied by charge ordering (CO), resulting in the emergence of complex phases and unusual behaviors. The famous example is the archetypal mixed-valence mineral magnetite, Fe3O4, exhibiting a complex charge-ordering below the Verwey transition, whose nature has been a subject of long-time debates. In our study, using high-resolution X-ray diffraction supplemented by resistance measurements and DFT+DMFT calculations, the electronic, magnetic, and structural properties of recently synthesized mixed-valence Fe4O5 are investigated under pressure to ∼100 GPa. Our calculations, consistent with experiment, reveal that at ambient conditions Fe4O5 is a narrow-gap insulator characterized by the original Verwey-type CO. Under pressure Fe4O5 undergoes a series of electronic and magnetic-state transitions with an unusual compressional behavior above ∼50 GPa. A site-dependent collapse of local magnetic moments is followed by the site-selective insulator-to-metal transition at ∼84 GPa, occurring at the octahedral Fe sites. This phase transition is accompanied by a 2+ to 3+ valence change of the prismatic Fe ions and collapse of CO. We provide a microscopic explanation of the complex charge ordering in Fe4O5 which "unifies" it with the behavior of two archetypal examples of charge- or bond-ordered materials, magnetite and rare-earth nickelates (RNiO3). We find that at low temperatures the Verwey-type CO competes with the "trimeron"/"dimeron" charge ordered states, allowing for pressure/temperature tuning of charge ordering. Summing up the available data, we present the pressure-temperature phase diagram of Fe4O5.

2.
Inorg Chem ; 56(3): 1173-1185, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28085271

ABSTRACT

Structural instability has a strong influence on the understanding of superconductivity in iron-containing 122 phases. Similar to the 122 iron-based high-temperature superconductors, the intermetallic compound BaNi2Ge2 undergoes an orthorhombic-to-tetragonal structural phase transition. The compound was prepared by arc-melting mixtures of the elements under an argon atmosphere. Single crystals were obtained by a special heat treatment in a welded tantalum ampule. The crystal structure of the compound was investigated by powder and single-crystal X-ray diffraction. Differential thermal analysis of BaNi2Ge2 showed a reversible phase transition at ca. 480 °C. In situ temperature-dependent synchrotron powder X-ray diffraction studies revealed that below 480 °C the crystal structure of BaNi2Ge2 is orthorhombic [own structure type, space group Pnma, a = 8.3852(4) Å, b = 11.3174(8) Å, and c = 4.2902(9) Å at 30 °C] and the high-temperature phase above 510 °C belongs to the tetragonal ThCr2Si2-type structure [space group I4/mmm, a = 4.2664(1) Å, and c = 11.2537(3) Å at 510 °C]. The reversible first-order low-temperature ↔ high-temperature phase transition around 480 °C is associated with distortion of the [Ni2Ge2] layer of low-temperature modification. The anisotropy of thermal expansion of the unit cell in BaNi2Ge2 was analyzed. The crystal chemistry and chemical bonding are discussed in terms of linear muffin-tin orbital band structure calculations and a topological analysis using the electron localization function. In related compounds, the level of distortion of the uncollapsed tetragonal ThCr2Si2-type structure depends on the valence electron count (VEC).

3.
J Phys Condens Matter ; 25(38): 385401, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23988740

ABSTRACT

We report results of a powder x-ray diffraction (XRD) study of vanadium sesquioxide, V2O3, under pressurization in a neon pressure-transmitting medium up to 57 GPa. We have established a bulk modulus value for corundum-type V2O3 of B0 = 150 GPa at B' = 4. This bulk modulus value is the lowest among those known for the corundum-type-structured oxides, e.g. Al2O3, α-Fe2O3, Cr2O3, Ti2O3, and α-Ga2O3. We have proposed that this might be related to the difference in the electronic band structures: at room temperature V2O3 is metallic, but the above corundum-structured sesquioxides are semiconducting or insulating. Around ∼21-27 and ∼50 GPa we registered changes in the XRD patterns that might be addressed to phase transitions. These transitions were sluggish upon room-temperature compression, and hence we additionally facilitated them by the laser heating of one sample. We have refined the XRD patterns of only the first high-pressure phase in an orthorhombic lattice of a Rh2O3(II)-type. Our findings significantly extend the knowledge of the P-T phase diagram of V2O3 and advance the understanding of its properties. We speculate that the elastic properties of V2O3 can be closely linked to its electronic band structure and, consequently, we propose that slightly doped V2O3 (e.g. with Cr) could be a potential candidate for systems in which the bulk modulus value may be remarkably switched by moderate pressure or temperature.

4.
Inorg Chem ; 52(12): 7020-30, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23721507

ABSTRACT

The solid solution Yb(x)Ca(1-x)C2 (0 ≤ x ≤ 1) was synthesized by reaction of the elements at 1323 K. The crystal structures within this solid solution, as elucidated from synchrotron powder diffraction data, depend on x and exhibit some interesting features that point to a structure dependent valence state of Yb. Compounds with x ≥ 0.75 crystallize in the tetragonal CaC2 type structure (I4/mmm, Z = 2) and obey Vegard's law; for x ≤ 0.75 the monoclinic ThC2 type structure (C2/c, Z = 4) is found, which coexists with the monoclinic CaC2-III type structure (C2/m, Z = 4) for x ≤ 0.25. The monoclinic modifications show a strong deviation from Vegard's law. Their unit cell volumes are remarkably larger than expected for a typical Vegard system. HERFD-XANES spectroscopic investigations reveal that different Yb valence states are responsible for the observed volume anomalies. While all tetragonal compounds contain mixed-valent Yb with ∼75% Yb(3+) (similar to pure YbC2), all monoclinic modifications contain exclusively Yb(2+). Therefore, Yb(x)Ca(1-x)C2 is a very rare example of a Yb containing compound showing a strong structure dependence of the Yb valence state. Moreover, temperature dependent synchrotron powder diffraction, neutron TOF powder diffraction, and HERFD-XANES spectroscopy experiments reveal significant Yb valence changes in some compounds of the Yb(x)Ca(1-x)C2 series that are induced by temperature dependent phase transitions. Transitions from the tetragonal CaC2 type structure to the monoclinic ThC2 or the cubic CaC2-IV type structure (Fm3m, Z = 4) are accompanied by drastic changes of the mean Yb valence from ∼2.70 to 2.0 in compounds with x = 0.75 and x = 0.91. Finally, the determination of lattice strain arising inside the modifications with ordered dumbbells (ThC2 and CaC2 type structures) by DSC measurements corroborated our results concerning the close relationship between crystal structure and Yb valence in the solid solution Yb(x)Ca(1-x)C2.

5.
Phys Chem Chem Phys ; 11(17): 3271-7, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19370224

ABSTRACT

The electrochemical delithiation of LiCo(0.6)M(0.4)PO(4) phosphates (M = Mn, Fe, Ni) was studied by in situ synchrotron diffraction. In all three metallophosphates the oxidation-reduction of 3d-elements proceed via two-phase mechanisms leading to two-phase regions, corresponding to the Co(2+)/Co(3+) and M(2+)/M(3+) reactions. The Ni(2+)/Ni(3+) reaction was not revealed, neither by the potentiostatic intermittent titration technique (PITT) nor by diffraction. In the two-phase reaction, the olivine-like structure of the cathode remains preserved, which is characteristic of this type of materials. Pronounced solid-solution domains were observed during both lithium extraction and insertion. The thermal stability of the charged cathodes is limited by the presence of Co(3+) and its intrinsic instability in these compounds.

6.
J Phys Condens Matter ; 21(37): 375902, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-21832356

ABSTRACT

Neutron, synchrotron x-ray powder diffraction and dielectric studies have been performed for morphotropic phase boundary (MPB) compositions of the (1-x)Na(1/2)Bi(1/2)TiO(3)-xPbTiO(3) system. At room temperature, the MPB compositions (0.10

7.
Acta Crystallogr B ; 64(Pt 6): 661-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19029695

ABSTRACT

Synthetic Co2SiO4 has an olivine structure with isolated SiO4 groups (space group Pnma) and shows magnetic ordering below 50 K. Single-crystal neutron diffraction was applied to determine precise crystal structure parameters at low temperatures. No structural phase transition was revealed in the temperature range 2.5-300 K. Lattice parameters were determined by high-resolution X-ray powder diffraction between 15 and 300 K. There is a clear evidence of an anomalous thermal expansion related to the magnetic phase transition which can be attributed to magnetostriction.

SELECTION OF CITATIONS
SEARCH DETAIL
...