Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 857(Pt 1): 159243, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36208760

ABSTRACT

We assessed the anthropogenic impacts on southwestern Australian submarine canyons by quantifying macro-litter discovered during Remotely Operated Vehicle surveys. The study area encompasses the Bremer canyon systems and Perth Canyon. The categories of macro-litter identified by our study are plastic, metal, aluminium, glass, fabric, mixed, derelict fishing gear, and unclassified. The anthropogenic impacts in the canyons explored is minimal, especially in the Bremer canyon systems, whereas Perth Canyon has comparatively more macro-litter, presumably due to intense maritime traffic and nearby urban development. On a global scale, however, the environmental status of southwestern Australian canyons is relatively pristine. This analysis provides a baseline for the monitoring and enduring stewardship of these habitats where lush and diverse biota, including deep-sea corals, thrive.


Subject(s)
Anthropogenic Effects , Plastics , Western Australia , Australia , Ecosystem , Environmental Monitoring
2.
Nat Commun ; 8: 15686, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28555644

ABSTRACT

Coral calcification is dependent on the mutualistic partnership between endosymbiotic zooxanthellae and the coral host. Here, using newly developed geochemical proxies (δ11B and B/Ca), we show that Porites corals from natural reef environments exhibit a close (r2 ∼0.9) antithetic relationship between dissolved inorganic carbon (DIC) and pH of the corals' calcifying fluid (cf). The highest DICcf (∼ × 3.2 seawater) is found during summer, consistent with thermal/light enhancement of metabolically (zooxanthellae) derived carbon, while the highest pHcf (∼8.5) occurs in winter during periods of low DICcf (∼ × 2 seawater). These opposing changes in DICcf and pHcf are shown to maintain oversaturated but stable levels of carbonate saturation (Ωcf ∼ × 5 seawater), the key parameter controlling coral calcification. These findings are in marked contrast to artificial experiments and show that pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification, but is highly vulnerable to thermally induced stress from global warming.


Subject(s)
Anthozoa/physiology , Calcification, Physiologic/physiology , Carbon/chemistry , Global Warming , Oceans and Seas , Seawater , Animals , Australia , Boron/chemistry , Calcium Carbonate/chemistry , Coral Reefs , Hydrogen-Ion Concentration , Ions , Temperature , Up-Regulation
3.
Rapid Commun Mass Spectrom ; 28(24): 2704-12, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25380492

ABSTRACT

RATIONALE: The isotopic composition and elemental abundance of boron (B) in marine carbonates provide a powerful tool for tracking changes in seawater pH and carbonate chemistry. Progress in this field has, however, been hampered by the volatile nature of B, its persistent memory, and other uncertainties associated with conventional chemical extraction and mass spectrometric measurements. Here we show that for marine carbonates, these limitations can be overcome by using a simplified, low-blank, chemical extraction technique combined with robust multi-collector inductively couple plasma mass spectrometry (MC-ICPMS) methods. METHODS: Samples are dissolved in dilute HNO3 and loaded first onto on a cation-exchange column with the major cations (Ca, Mg, Sr, Na) being quantitatively retained while the B fraction is carried in the eluent. The eluent is then passed directly through an anion column ensuring that any residual anions, such as SO4(2-), are removed. Isotopic measurements of (11)B/(10)B ratios are undertaken by matching both the B concentration and the isotopic compositions of the samples with the bracketing standard, thereby minimising corrections for cross-contamination. RESULTS: The veracity of the MC-ICPMS procedure is demonstrated using a gravimetrically prepared laboratory standard, UWA24.7, relative to the international reference standard NIST SRM 951 (δ(11)B = 0‰). This gives values consistent with gravimetry (δ(11)B = 24.7 ± 0.3‰ 2sd) for solutions ranging in concentration from 50 to 500 ppb, equivalent to ~2-10 mg size coral samples. The overall integrity of the method for carbonate analysis is demonstrated by measurements of the international carbonate standard JCp-1 (δ(11)B = 24.3 ± 0.34‰ 2sd). CONCLUSIONS: A streamlined, integrated approach is described here that enables rapid, accurate, high-precision measurements of boron isotopic compositions and elemental abundances in commonly analysed biogenic carbonates, such as corals, bivalves, and large benthic forams. The overall simplicity of this robust approach should greatly facilitate the wider application of boron isotope geochemistry, especially to marine carbonates.


Subject(s)
Boron/analysis , Carbonates/chemistry , Animals , Anthozoa/chemistry , Bivalvia/chemistry , Boron/chemistry , Foraminifera/chemistry , Isotopes/analysis , Isotopes/chemistry , Mass Spectrometry , Sulfates/chemistry
4.
Science ; 321(5888): 550-4, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18653889

ABSTRACT

The Ordovician Period, long considered a supergreenhouse state, saw one of the greatest radiations of life in Earth's history. Previous temperature estimates of up to approximately 70 degrees C have spawned controversial speculation that the oxygen isotopic composition of seawater must have evolved over geological time. We present a very different global climate record determined by ion microprobe oxygen isotope analyses of Early Ordovician-Silurian conodonts. This record shows a steady cooling trend through the Early Ordovician reaching modern equatorial temperatures that were sustained throughout the Middle and Late Ordovician. This favorable climate regime implies not only that the oxygen isotopic composition of Ordovician seawater was similar to that of today, but also that climate played an overarching role in promoting the unprecedented increases in biodiversity that characterized this period.


Subject(s)
Biodiversity , Climate , Fossils , Seawater , Vertebrates , Animals , Apatites , Invertebrates , Oceans and Seas , Oxygen Isotopes/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...