Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Regul Toxicol Pharmacol ; 138: 105329, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592682

ABSTRACT

To support registration of monoclonal antibodies (mAbs) for chronic indications, 6-month toxicity studies have historically been conducted. Experience with mAb development has shown a relatively benign and well-understood safety profile for this class, with most toxicity findings anticipated based on pharmacology. We evaluated whether a 6-month toxicity study is necessary to assess the long-term safety of mAbs. Data on First-in-Human (FIH)-enabling and chronic toxicity studies were shared for 142 mAbs submitted by 11 companies. Opportunities to further optimize study designs to reduce animal usage were identified. For 71% of mAbs, no toxicities or no new toxicities were noted in chronic studies compared to FIH-enabling study findings. New toxicities of potential concern for human safety or that changed trial design were identified in 13.5% of cases, with 7% being considered critical and 2% leading to program termination. An iterative, weight-of-evidence model which considers factors that influence the overall risk for a mAb to cause toxicity was developed. This model enables an evidence-based justification, suggesting when 3-month toxicity studies are likely sufficient to support late-stage clinical development and registration for some mAbs.


Subject(s)
Antibodies, Monoclonal , Research Design , Animals , Humans , Antibodies, Monoclonal/toxicity
2.
Regul Toxicol Pharmacol ; 138: 105339, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36649820

ABSTRACT

Assessment of reversibility from nonclinical toxicity findings in animals with potential adverse clinical impact is required during pharmaceutical development, but there is flexibility around how and when this is performed and if recovery animals are necessary. For monoclonal antibodies (mAbs) and in accordance with ICH S6(R1) if inclusion of recovery animals is warranted, this need only occur in one study. Data on study designs for first-in-human (FIH)-enabling and later-development toxicity studies were shared from a recent collaboration between the NC3Rs, EPAA, Netherlands Medicines Evaluation Board (MEB) and 14 pharmaceutical companies. This enabled a review of practices on recovery animal use during mAb development and identification of opportunities to reduce research animal use. Recovery animals were included in 68% of FIH-enabling and 69% of later-development studies, often in multiple studies in the same program. Recovery groups were commonly in control plus one test article-dosed group or in all dose groups (45% of studies, each design). Based on the shared data review and conclusions, limiting inclusion of recovery to a single nonclinical toxicology study and species, study design optimisation and use of existing knowledge instead of additional recovery groups provide opportunities to further reduce animal use within mAb development programs.


Subject(s)
Antibodies, Monoclonal , Research Design , Animals , Humans , Antibodies, Monoclonal/adverse effects , Drug Evaluation, Preclinical , Drug Development , Control Groups
3.
Cancer Chemother Pharmacol ; 89(4): 515-527, 2022 04.
Article in English | MEDLINE | ID: mdl-35298699

ABSTRACT

PURPOSE: Preclinical characterization of cetrelimab (JNJ-63723283), a fully humanized immunoglobulin G4 kappa monoclonal antibody targeting programmed cell death protein-1 (PD-1), in human cancer models. METHODS: Cetrelimab was generated by phage panning against human and cynomolgus monkey (cyno) PD-1 extracellular domains (ECDs) and affinity maturation. Binding to primate and rodent PD-1 ECDs, transfected and endogenous cell-surface PD-1, and inhibition of ligand binding were measured. In vitro activity was evaluated using cytomegalovirus recall, mixed lymphocyte reaction, staphylococcal enterotoxin B stimulation, and Jurkat-PD-1 nuclear factor of activated T cell reporter assays. In vivo activity was assessed using human PD-1 knock-in mice implanted with MC38 tumors and a lung patient-derived xenograft (PDX) model (LG1306) using CD34 cord-blood-humanized NSG mice. Pharmacodynamics, toxicokinetics, and safety were assessed in cynos following single and/or repeat intravenous dosing. RESULTS: Cetrelimab showed high affinity binding to human (1.72 nM) and cyno (0.90 nM) PD-1 and blocked binding of programmed death-ligand 1 (PD-L1; inhibitory concentration [IC] 111.7 ng/mL) and PD-L2 (IC 138.6 ng/mL). Cetrelimab dose-dependently increased T cell-mediated cytokine production and stimulated cytokine expression. Cetrelimab 10 mg/kg reduced mean MC38 tumor volume in PD-1 knock-in mice at Day 21 (P < 0.0001) versus control. In a PDX lung model, 10 mg/kg cetrelimab (every 5 days for six cycles) increased frequency of peripheral T cells and reduced (P < 0.05) mean tumor volume versus control. Activity was consistent with that of established PD-1 inhibitors. Cetrelimab dosing was well tolerated in cynos and mean drug exposure increase was dose-dependent. CONCLUSION: Cetrelimab potently inhibits PD-1 in vitro and in vivo, supporting its clinical evaluation.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Cytokines/metabolism , Disease Models, Animal , Humans , Immune Checkpoint Inhibitors/therapeutic use , Macaca fascicularis , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors
4.
Toxicol Pathol ; 47(5): 649-655, 2019 07.
Article in English | MEDLINE | ID: mdl-31280699

ABSTRACT

The recent Scientific Committee on Health, Environmental and Emerging Risks Final Opinion on "The need for nonhuman primates in biomedical research, production and testing of products and devices" (2017 SCHEER) highlights approaches that could significantly contribute to the replacement, reduction, and refinement of nonhuman primate (NHP) studies. Initiatives that have the potential to affect NHP welfare and/or their use are expected to be appropriate, fair, and objective and publicly disseminated information focused on NHPs in biomedical research, which includes toxicologic and pathologic research and testing, should be objectively evaluated by stakeholder scientists, researchers, and veterinarians. Thus, IQ Consortium member companies convened to develop an informed and objective response, focusing on identifying areas of agreement, potential gaps, or missing information in 2017 SCHEER. Overall, the authors agree that many positions in the 2017 SCHEER Opinion generally align with industry views on the use of NHPs in research and testing, including the ongoing need of NHPs in many areas of research. From the perspective of the IQ Consortium, there are several topics in the 2017 SCHEER that merit additional comment, attention, or research, as well as consideration in future opinions.


Subject(s)
Animal Use Alternatives/trends , Biomedical Research/methods , Drug Evaluation, Preclinical/trends , Primates , Animal Use Alternatives/ethics , Animal Use Alternatives/legislation & jurisprudence , Animal Welfare , Animals , Bioethics , Biomedical Research/ethics , Biomedical Research/legislation & jurisprudence , Drug Evaluation, Preclinical/ethics , Drug Evaluation, Preclinical/methods , European Union , Government Regulation
5.
Int J Toxicol ; 36(1): 35-49, 2017.
Article in English | MEDLINE | ID: mdl-28056568

ABSTRACT

BMS-986094, a 2'-C-methylguanosine prodrug for the treatment of chronic hepatitis C virus infection, was withdrawn from phase 2 clinical trials because of unexpected cardiac and renal toxicities. To better understand these toxicities, the in vitro metabolism of BMS-986094 in human hepatocytes (HHs) and human cardiomyocytes (HCMs) and the measurement of BMS-986094 and selected metabolites in monkey plasma and tissues were assessed. BMS-986094 was extensively metabolized by HHs and HCMs, resulting in more efficient formation and accumulation of the active triphosphorylated metabolite, INX-09114, and less efficient efflux of metabolites in HCMs. The predominant metabolism pathway (hydrolysis) in HHs and HCMs was not associated with the formation of reactive metabolites or oxidative stress. In cynomolgus monkeys dosed with BMS-986094 of 15 or 30 mg/kg/d for 3 weeks, the nucleoside metabolite M2 was the major plasma analyte (66%-68% of the combined area under the curve). INX-09114 was the highest drug-related species in the heart and kidney (2,610-4,280 ng/mL [males]; ∼2-420× the concentration of other analytes). Other analytes increased dose dependently, with BMS-986094 highest in diaphragm (≤4,400 ng/mL) followed by M2 in liver and kidney (≤1,360 ng/mL), and M7 and M8 in other tissues (≤124 ng/mL). Three weeks after the last dose, INX-09114 remained high in the heart and kidney (≤1,870 ng/mL), with low M2 (≤37 ng/mL) in plasma and tissues. Persistent high concentrations of INX-09114 in the heart and kidney appeared to correlate with toxicities in these tissues in monkeys.

6.
Article in English | MEDLINE | ID: mdl-26209768

ABSTRACT

BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2)) linear regression model. Intra-assay and inter-assay precision (CV, %) ranged from 2.3% to 5.5% and accuracy within ±2.2% from nominal. INX-08032 was found to be stable in acidified mouse plasma for at least 24h in wet ice bath, 125 days at -70°C and following at least three freeze-thaw cycles. No endogenous components in plasma were found to interfere with the measurement. The extraction recovery was between 90% and 95%. The assays for BMS-986094, INX-08144, INX-09054 and INX-09114 were qualified with wider acceptance criteria for accuracy and precision. Analyte stability was also evaluated to guide sample collection, storage, and processing. These assays were successfully applied to an investigative toxicokinetic and tissue metabolite profiling study described in the article.


Subject(s)
Chromatography, Liquid/methods , Guanosine Monophosphate/analogs & derivatives , Tandem Mass Spectrometry/methods , Animals , Guanosine Monophosphate/analysis , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/metabolism , Guanosine Monophosphate/pharmacokinetics , Haplorhini , Linear Models , Mice , Models, Molecular , Polyphosphates , Rabbits , Rats , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
7.
Article in English | MEDLINE | ID: mdl-25756208

ABSTRACT

We have developed and fully validated a fast and simple LC-MS/MS assay to quantitate a therapeutic protein BMS-A in cynomolgus monkey serum. Prior to trypsin digestion, a recently reported sample pretreatment method was applied to remove more than 95% of the total serum albumin and denature the proteins in the serum sample. The pretreatment procedure simplified the biological sample prior to digestion, improved digestion efficiency and reproducibility, and did not require reduction and alkylation. The denatured proteins were then digested with trypsin at 60 °C for 30 min and the tryptic peptides were chromatographically separated on an Acquity CSH column (2.1 mm × 50 mm, 1.7 µm) using gradient elution. One surrogate peptide was used for quantitation and another surrogate peptide was selected for confirmation. Two corresponding stable isotope labeled peptides were used to compensate variations during LC-MS detection. The linear analytical range of the assay was 0.50-500 µg/mL. The accuracy (%Dev) was within ± 5.4% and the total assay variation (%CV) was less than 12.0% for sample analysis. The validated method demonstrated good accuracy and precision and the application of the innovative albumin removal sample pretreatment method improved both assay sensitivity and robustness. The assay has been applied to a cynomolgus monkey toxicology study and the serum sample concentration data were in good agreement with data generated using a quantitative ligand-binding assay (LBA). The use of a confirmatory peptide, in addition to the quantitation peptide, ensured the integrity of the drug concentrations measured by the method.


Subject(s)
Chromatography, Liquid/methods , Recombinant Proteins/blood , Tandem Mass Spectrometry/methods , Animals , Linear Models , Macaca fascicularis , Peptide Fragments/analysis , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Reproducibility of Results , Sensitivity and Specificity , Serum Albumin , Trypsin
8.
J Pharm Biomed Anal ; 89: 240-50, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316424

ABSTRACT

An UHPLC-MS/MS method was developed and validated to quantify BMS-927711, a drug candidate to treat migraine, in rat dried blood spots (DBS). The DBS samples were extracted using an improved liquid-liquid extraction (LLE) strategy involving in the sonication of DBS punches in 20% MeOH aqueous solution containing the internal standard, [(13)C2, D4]-BMS-927711, and then with a 100mM NH4OAc buffer solution, followed by an automated LLE with EtOAc-hexane (70:30, v/v). The presence of 20% MeOH as an organic modifier in the elution solution significantly improved the analyte elution efficiency and assay performance. A novel inter-well volume replacement dilution workflow was introduced for DBS sample dilution before LLE step. This was a simple two-step process, firstly a small portion of the DBS blank solution was discarded, and then the same volume of a concentrated DBS sample solution was spiked into the leftover blank solution to achieve a desired dilution. Chromatographic separation was achieved on an Acuity UPLC(®) BEH C18 column (2.1mm×50mm, 1.7µm) and the analyte was detected by selected reaction monitoring (SRM) with positive electrospray ionization on an AB Sciex Triple Quad 5500 mass spectrometer. The standard curve was linear from 5.00 to 5000ng/mL with assay precision ≤4.9% CV, and assay accuracy within ±3.1%Dev of the nominal values. Accurate sample dilution was achieved by using inter-well volume replacement with a precision of ≤4.2% CV and an accuracy of ±3.3% for dilution QC at 50,000ng/mL with 100-fold dilution (n=18). This robust UHPLC-MS/MS assay has been successfully applied to the non-clinical studies in rats. By using inter-well volume replacement workflow, accurate dilution was demonstrated using only one DBS blank sample for a typical dilution of <50-fold, and using only two blank DBS samples for a dilution of up to 625-fold. Moreover, this new workflow makes it easier to automate DBS sample dilution.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dried Blood Spot Testing/methods , Piperidines/chemistry , Pyridines/chemistry , Animals , Indicator Dilution Techniques , Limit of Detection , Liquid-Liquid Extraction/methods , Rats , Reproducibility of Results , Tandem Mass Spectrometry/methods , Workflow
9.
J Pharm Biomed Anal ; 83: 237-48, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770636

ABSTRACT

BMS-927711 is a calcitonin gene-related peptide (CGRP) receptor antagonist that is being developed for the treatment of migraine. A rapid, accurate and robust assay was developed and validated for the quantitation of BMS-927711 in rat, monkey, rabbit and mouse plasma using ultra high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). A simplified method screening strategy was utilized that included a liquid-liquid extraction (LLE) methodology and eleven LC columns (ten sub-2 µm UHPLC columns and one 2.6 µm HPLC column) for screening with emphasis on the removal of phospholipids, avoidance of metabolite interference and ruggedness of LC conditions. A stable isotope labeled [(13)C2, D4]-BMS-927711 was used as the internal standard, and 50 µL of plasma samples were used for extraction by automated LLE with methyl tert-butyl ether (MTBE) in 96-well format. Chromatographic separation was achieved with an isocratic elution and a gradient column wash on a Waters Acuity UPLC(®) BEH C18 column (2.1 mm × 50 mm, 1.7 µm) with run time of 3.7 min. Positive electrospray ionization was performed using selected reaction monitoring (SRM) with transitions of m/z 535>256 for BMS-927711 and m/z 541>256 for [(13)C2, D4]-BMS-927711. The standard curve, which ranged from 3.00 to 3000 ng/mL for BMS-927711, was fitted to a 1/x(2) weighted linear regression model. The intra-assay precision was within 5.2% CV, inter-assay precision was within 5.9% CV, and the assay accuracy was within ±5.2% deviation (%Dev) of the nominal values in all the species. The stability of an N-carbamoyl glucuronide metabolite was carefully investigated, and the conversion of this metabolite to BMS-927711 was minimal and manageable without a stabilization procedure. The method was successfully applied to multiple non-clinical toxicokinetic studies in different species in support of the investigative new drug (IND) filing.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Chromatography, High Pressure Liquid/methods , Piperidines/blood , Piperidines/chemistry , Pyridines/blood , Pyridines/chemistry , Tandem Mass Spectrometry/methods , Animals , Glucuronides/chemistry , Haplorhini , Liquid-Liquid Extraction/methods , Mice , Rabbits , Rats , Reference Standards
10.
Toxicol Sci ; 117(2): 485-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20643750

ABSTRACT

This study was conducted to assess the safety and tolerability of the alternative formulation vehicles polysorbate 80 (PS80), propylene glycol (PG), and hydroxypropyl-beta-cyclodextrin (HPßCD) in general toxicology studies in the mouse, rat, dog, and monkey. Twenty (20) mg/kg of hydroxypropyl methylcellulose (MC, control), 10 mg/kg PS80, 1000 mg/kg PG, 500 mg/kg HPßCD, or 1000 mg/kg HPßCD were administered by oral gavage to mice, rats, dogs, and cynomolgus monkeys for approximately 90 days. The effects of these formulations on clinical observations, body weight and food consumption parameters, clinical pathology, and histopathology were evaluated across all species. The suitability of formulations containing up to 20 mg/kg MC, 10 mg/kg PS80, and 1000 mg/kg PG for use in preclinical safety studies was confirmed by a lack of effects on all parameters examined. However, formulations containing HPßCD produced elevated transaminase (aspartate and alanine aminotransferase) levels in rats and mice and fecal changes (loose and soft stool) in large animals. Although the etiology and toxicological significance of the transaminase elevations in rats and mice is uncertain, this finding could represent a significant liability for a preclinical formulation because of the critical importance of these biomarkers in the risk assessment of novel therapeutic agents. Based on these data, PS80 and PG are considered to be practical alternatives to MC in preclinical toxicology studies. However, formulations containing HPßCD should be used with caution because of the elevations in rodent transaminase levels.


Subject(s)
Methylcellulose/analogs & derivatives , Pharmaceutical Vehicles/toxicity , Polysorbates/toxicity , Propylene Glycol/toxicity , beta-Cyclodextrins/toxicity , 2-Hydroxypropyl-beta-cyclodextrin , Administration, Oral , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Diarrhea/chemically induced , Dogs , Female , Hypromellose Derivatives , Liver/drug effects , Liver/metabolism , Liver Function Tests , Macaca fascicularis , Male , Methylcellulose/toxicity , Mice , Rats , Toxicity Tests
11.
Toxicol In Vitro ; 24(1): 1-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19490935

ABSTRACT

In spite of over 20 years of effort, no single in vitro assay has been developed and validated as a full regulatory replacement for the Draize Eye Irritation test. However, companies have been using in vitro methods to screen new formulations and in some cases as their primary assessment of eye irritation potential for many years. The present report shows the outcome of an Expert Meeting convened by the European Centre for the Validation of Alternative Methods in February 2005 to identify test strategies for eye irritation. In this workshop test developers/users were requested to nominate methods to be considered as a basis for the identification of such testing strategies. Assays were evaluated and categorized based on their proposed applicability domains (e.g., categories of irritation severity, modes of action, chemical class, physicochemical compatibility). The analyses were based on the data developed from current practice and published studies, the ability to predict depth of injury (within the applicable range of severity), modes of action that could be addressed and compatibility with different physiochemical forms. The difficulty in predicting the middle category of irritancy (e.g. R36, GHS Categories 2A and 2B) was recognized. The testing scheme proposes using a Bottom-Up (begin with using test methods that can accurately identify non-irritants) or Top-Down (begin with using test methods that can accurately identify severe irritants) progression of in vitro tests (based on expected irritancy). Irrespective of the starting point, the approach would identify non-irritants and severe irritants, leaving all others to the (mild/moderate) irritant GHS 2/R36 categories.


Subject(s)
Animal Testing Alternatives , Eye Diseases/chemically induced , Irritants/toxicity , Toxicology/methods , Animals , Cattle , Chickens , Epithelium, Corneal/pathology , European Union , Eye/pathology , Eye Diseases/pathology , Humans , In Vitro Techniques , Legislation, Drug , Rabbits , Reproducibility of Results , Swine
12.
Environ Health Perspect ; 112(12): 1255-63, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15345372

ABSTRACT

Previous research demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment increased the number of skin papillomas in v-Ha-ras transgenic (Tg.AC) mice that had received sodium arsenite [(As(III)] in drinking water, indicating that this model is useful for studying the toxic effects of arsenic in vivo. Because the liver is a known target of arsenic, we examined the pathophysiologic and molecular effects of inorganic and organic arsenical exposure on Tg.AC mouse liver in this study. Tg.AC mice were provided drinking water containing As(III), sodium arsenate [As(V)], monomethylarsonic acid [(MMA(V)], and 1,000 ppm dimethylarsinic acid [DMA(V)] at dosages of 150, 200, 1,500, or 1,000 ppm as arsenic, respectively, for 17 weeks. Control mice received unaltered water. Four weeks after initiation of arsenic treatment, TPA at a dose of 1.25 microg/200 microL acetone was applied twice a week for 2 weeks to the shaved dorsal skin of all mice, including the controls not receiving arsenic. In some cases arsenic exposure reduced body weight gain and caused mortality (including moribundity). Arsenical exposure resulted in a dose-dependent accumulation of arsenic in the liver that was unexpectedly independent of chemical species and produced hepatic global DNA hypomethylation. cDNA microarray and reverse transcriptase-polymerase chain reaction analysis revealed that all arsenicals altered the expression of numerous genes associated with toxicity and cancer. However, organic arsenicals [MMA(V) and DMA(V)] induced a pattern of gene expression dissimilar to that of inorganic arsenicals. In summary, subchronic exposure of Tg.AC mice to inorganic or organic arsenicals resulted in toxic manifestations, hepatic arsenic accumulation, global DNA hypomethylation, and numerous gene expression changes. These effects may play a role in arsenic-induced hepatotoxicity and carcinogenesis and may be of particular toxicologic relevance.


Subject(s)
Arsenates/toxicity , Arsenicals/adverse effects , Arsenites/toxicity , Cacodylic Acid/toxicity , DNA Methylation , Gene Expression Profiling , Herbicides/toxicity , Administration, Oral , Animals , Arsenates/administration & dosage , Arsenates/pharmacokinetics , Arsenicals/administration & dosage , Arsenicals/pharmacokinetics , Arsenites/administration & dosage , Arsenites/pharmacokinetics , Cacodylic Acid/administration & dosage , Cacodylic Acid/pharmacokinetics , Herbicides/administration & dosage , Herbicides/pharmacokinetics , Kinetics , Liver/drug effects , Liver/pathology , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Toxicogenetics/methods , Water Supply
13.
Toxicol Appl Pharmacol ; 198(3): 434-43, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15276424

ABSTRACT

Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity.


Subject(s)
Arsenites/therapeutic use , Cytokines/biosynthesis , Dermatitis, Contact/prevention & control , Enzyme Inhibitors/therapeutic use , Immunization , Sodium Compounds/therapeutic use , Animals , Arsenites/pharmacology , Dermatitis, Contact/immunology , Dinitrofluorobenzene/toxicity , Enzyme Inhibitors/pharmacology , Female , Flow Cytometry , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Mice , Mice, Inbred BALB C , Sodium Compounds/pharmacology
14.
Environ Health Perspect ; 110 Suppl 5: 761-6, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12426128

ABSTRACT

Arsenic is a carcinogen that poses a significant health risk in humans. Based on evidence that arsenic has differential effects on human, rodent, normal, and transformed cells, these studies addressed the relative merits of using normal human epidermal keratinocytes (NHEK) and immortalized human (HaCaT) and mouse (HEL30) keratinocytes when examining stress-induced gene expression that may contribute to carcinogenesis. We hypothesize that redox-related gene expression is differentially modulated by arsenic in normal versus immortalized keratinocytes. To test the hypothesis, we exposed keratinocytes to sodium arsenite for 4 or 24 hr, at which time serine threonine kinase-25 (stk25) and nicotine adenine dinucleotide phosphate [nad(p)h] quinone oxidoreductase gene expression were measured. The effect of glutathione reduction on arsenite-induced cytotoxicity and gene expression in NHEK also was evaluated by addition of l-buthionine-[S,R]-sulfoximine (BSO) to culture media. Results indicate the term LC(50) for arsenite is approximately 10-15 microM in NHEK and HEL30 keratinocytes and 30 microM in HaCaT keratinocytes. Compared with HaCaT and HEL30 keratinocytes, a nontoxic concentration of arsenite (2.5 microM) increases stk25 and nad(p)h quinone oxidoreductase gene expression in NHEK, an effect partially attenuated by BSO. These data indicate that NHEK and HaCaT/HEL30 keratinocytes have similar sensitivities toward arsenite-induced cytotoxicity but unique gene expression responses. They also suggest that arsenite modulates gene expression in NHEK involved in cellular signaling and other aspects of intermediary metabolism that may contribute to the carcinogenic process.


Subject(s)
Arsenites/adverse effects , Cell Transformation, Neoplastic , Enzyme Inhibitors/adverse effects , Gene Expression Regulation , Keratinocytes/drug effects , Sodium Compounds/adverse effects , Animals , Blotting, Northern , Glutathione/metabolism , Humans , Keratinocytes/physiology , Mice , Oxidation-Reduction , Protein Serine-Threonine Kinases/biosynthesis , Signal Transduction
15.
Toxicol Sci ; 69(2): 306-16, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12377979

ABSTRACT

Human exposure to arsenic, a ubiquitous and toxic environmental pollutant, is associated with an increased incidence of skin cancer. However, the mechanism(s) associated with AsIII-mediated toxicity and carcinogenesis at low levels of exposure remains elusive. Aberrations in cell proliferation, oxidative damage, and DNA-repair fidelity have been implicated in sodium arsenite (AsIII)-mediated carcinogenicity and toxicity, but these events have been examined in isolation in the majority of biological models of arsenic exposure. We hypothesized that the simultaneous interaction of these effects may be important in arsenic-mediated neoplasia in the skin. To evaluate this, normal human epidermal keratinocytes (NHEK) were exposed to nontoxic doses (0.005-5 micro M) of AsIII and monitored for several physiological endpoints at the times when cells were harvested for gene expression measurements (1-24 h). Two-fluor cDNA microarray analyses indicated that AsIII treatment decreased the expression of genes associated with DNA repair (e.g., p53 and Damage-specific DNA-binding protein 2) and increased the expression of genes indicative of the cellular response to oxidative stress (e.g., Superoxide dismutase 1, NAD(P)H quinone oxidoreductase, and Serine/threonine kinase 25). AsIII also modulated the expression of certain transcripts associated with increased cell proliferation (e.g., Cyclin G1, Protein kinase C delta), oncogenes, and genes associated with cellular transformation (e.g., Gro-1 and V-yes). These observations correlated with measurements of cell proliferation and mitotic measurements as AsIII treatment resulted in a dose-dependent increase in cellular mitoses at 24 h and an increase in cell proliferation at 48 h of exposure. Data in this manuscript demonstrates that AsIII exposure simultaneously modulates DNA repair, cell proliferation, and redox-related gene expression in nontransformed, normal NHEK. It is anticipated that data in this report will serve as a foundation for furthering our knowledge of AsIII-regulated gene expression in skin and other tissues and contribute to a better understanding of arsenic toxicity and carcinogenesis.


Subject(s)
Arsenites/toxicity , DNA Damage , DNA Repair/drug effects , Keratinocytes/drug effects , Acetylcysteine/pharmacology , Blotting, Northern , Cell Line , Cell Survival/drug effects , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Free Radical Scavengers/pharmacology , Gene Expression/drug effects , Humans , Keratinocytes/metabolism , Mitotic Index , Oligonucleotide Array Sequence Analysis , Skin/cytology , Skin/drug effects , Thymidine/metabolism , Transcription, Genetic/drug effects
16.
Antioxid Redox Signal ; 4(4): 665-73, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12230879

ABSTRACT

Skin is a major target of oxidative stress due to reactive oxygen species (ROS) that originate in the environment and in the skin itself. ROS are generated during normal metabolism, are an integral part of normal cellular function, and are usually of little harm because of intracellular mechanisms that reduce their damaging effects. Antioxidants attenuate the damaging effects of ROS and can impair and/or reverse many of the events that contribute to epidermal toxicity and disease. However, increased or prolonged free radical action can overwhelm ROS defense mechanisms, contributing to the development of cutaneous diseases and disorders. Although ROS play a role in diseases such as skin cancer, their biological targets and pathogenic mode of action are still not fully understood. In addition, strategies useful in the therapeutic management of ROS action in human skin are still lacking. This review is intended to give investigators an introduction to ROS, antioxidants, two skin disorders influenced by ROS action (skin cancer and psoriasis), and relevant model systems used to study ROS action.


Subject(s)
Antioxidants/metabolism , Oxidative Stress , Psoriasis/metabolism , Reactive Oxygen Species/metabolism , Skin Neoplasms/metabolism , Animals , DNA Damage , Disease Models, Animal , Humans , Immune System/physiology , Models, Biological , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...