Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 16(1): 44-48, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29424717

ABSTRACT

The presence of Waddlia chondrophila has been related to respiratory tract infections and human and animal fetal death. Although several sources of infection have been suggested, the actual source remains unknown and limited information exists on the prevalence of W. chondrophila in the environment. This pathogen has been previously detected in well water but its presence has not been confirmed in water networks. Since these bacteria have been detected in water reservoirs, it has been hypothesized that they can access artificial water systems and survive until they find appropriate conditions to proliferate. In this work, their presence in water samples from 19 non-domestic water networks was tested by quantitative polymerase chain reaction (qPCR). Approximately half of the networks (47%) were positive for W. chondrophila and the overall results revealed 20% positive samples (12/59). Furthermore, most of the samples showed low concentrations of the pathogen (<200 genomic units/L). This finding demonstrates that W. chondrophila can colonize some water networks. Therefore, they must be considered as potential infection sources in future epidemiological studies.


Subject(s)
Chlamydiales/isolation & purification , Water Microbiology , Water Supply , France , Hot Temperature , Polymerase Chain Reaction , Risk Assessment
2.
J Water Health ; 13(2): 302-10, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26042964

ABSTRACT

Vermamoeba vermiformis is a free-living amoeba (FLA) widely distributed in the environment, known to colonize hot water networks and to be the reservoir of pathogenic bacteria such as Legionella pneumophila. FLA are partly resistant to biocides, especially in their cyst form. The control of V. vermiformis in hot water networks represents an important health issue, but there are very few data on their resistance to disinfection treatments. The sensitivity of cysts of two strains of V. vermiformis to three disinfectants frequently used in hot water networks (chlorine, heat shock, peracetic acid (PAA) mixed with hydrogen peroxide (H2O2)) was investigated. In vitro, several concentrations of biocides, temperatures and exposure times according to the French regulation were tested. Cysts were fully inactivated by the following conditions: 15 mg/L of chlorine for 10 min; 60 °C for 30 min; and 0.5 g/L equivalent H2O2 of PAA mixed with H2O2 for 30 min. For the first time, the strong efficacy of subtilisin (0.625 U/mL for 24 h), a protease, to inactivate the V. vermiformis cysts has been demonstrated. It suggests that novel approaches may be efficient for disinfection processes. Finally, V. vermifomis cysts were sensitive to all the tested treatments and appeared to be more sensitive than Acanthamoeba cysts.


Subject(s)
Disinfectants/pharmacology , Hartmannella/drug effects , Peptide Hydrolases/pharmacology , Animals , Disinfection/methods , Water/parasitology
3.
J Eukaryot Microbiol ; 62(3): 327-37, 2015.
Article in English | MEDLINE | ID: mdl-25284205

ABSTRACT

Free-living amoebae are ubiquitous protozoa commonly found in water. Among them, Acanthamoeba and Vermamoeba (formerly Hartmannella) are the most represented genera. In case of stress, such as nutrient deprivation or osmotic stress, these amoebae initiate a differentiation process, named encystment. It leads to the cyst form, which is a resistant form enabling amoebae to survive in harsh conditions and resist disinfection treatments. Encystment has been thoroughly described in Acanthamoeba but poorly in Vermamoeba. Our study was aimed to follow the encystment/excystment processes by microscopic observations. We show that encystment is quite rapid, as mature cysts were obtained in 9 h, and that cyst wall is composed of two layers. A video shows that a locomotive form is likely involved in clustering cysts together during encystment. As for Acanthamoeba, autophagy is likely active during this process. Specific vesicles, possibly involved in ribophagy, were observed within the cytoplasm. Remarkably, mitochondria rearranged around the nucleus within the cyst, suggesting high needs in energy. Unlike Acanthamoeba and Naegleria, no ostioles were observed in the cyst wall suggesting that excystment is original. During excystment, large vesicles, likely filled with hydrolases, were found in close proximity to cyst wall and digest it. Trophozoite moves inside its cyst wall before exiting during excystment. In conclusion, Vermamoeba encystment/excystment displays original trends as compare to Acanthamoeba.


Subject(s)
Lobosea/cytology , Lobosea/physiology , Spores, Protozoan/cytology , Spores, Protozoan/physiology , Microscopy, Video , Time Factors
4.
Exp Parasitol ; 145 Suppl: S62-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24721257

ABSTRACT

Vermamoeba vermiformis is a free-living amoeba (FLA) which is widely distributed in the environment. It is known to colonize water systems and to be a reservoir of pathogenic bacteria, such as Legionella pneumophila. For these reasons the control of V. vermiformis represents an important health issue. However, FLA may be resistant to disinfection treatments due to the process of encystment. Thereby, it is important to better understand factors influencing this process. In this aim, we investigated the effect of temperature, pH, osmotic pressure and cell concentration on the encystment of two V. vermiformis strains. Encystment was quite fast, with a 100% encystment rate being observed after 9h of incubation. For the two strains, an optimal encystment was obtained at 25 and 37°C. Concerning pH and osmotic pressure, there were different effects on the encystment according to the tested strains. For the reference strain (ATCC 50237), the patterns of encystment were similar for pH comprised between 5 and 9 and for KCl concentrations ranging from 0.05 to 0.2 mol L(-1). For the environmental strain (172A) an optimal encystment was obtained for basic pH (8 and 9) and for a concentration in KCl of 0.1 mol L(-1). The results also clearly demonstrated that the encystment rate increased with cell concentration, suggesting that there is an inter-amoebal communication. The present study establish for the first time environmental conditions favoring encystment and would lay the foundations to better control the encystment of V. vermiformis.


Subject(s)
Hartmannella/physiology , Cell Count , Hartmannella/cytology , Hydrogen-Ion Concentration , Kinetics , Oocysts/physiology , Osmotic Pressure/physiology , Temperature , Trophozoites/cytology , Trophozoites/physiology , Water/parasitology
5.
Appl Environ Microbiol ; 78(19): 6850-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22820326

ABSTRACT

Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms.


Subject(s)
Biofilms/drug effects , Disinfectants/pharmacology , Eukaryota/drug effects , Eukaryota/physiology , Legionella pneumophila/drug effects , Legionella pneumophila/physiology , Water Microbiology , Biota , Disinfection/methods , Hot Temperature , Molecular Sequence Data , Sequence Analysis, DNA
6.
Mol Cell Probes ; 26(3): 116-20, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22449586

ABSTRACT

Free-living amoebae (FLA) are protozoa found worldwide in soil and aquatic environments, which are able to colonize man-made water networks. Some FLA have the potential to be pathogenic and others might harbour pathogenic bacteria. Indeed, FLA feed on bacteria, but some bacteria could resist phagocytosis and either survive in FLA or even multiply within FLA. These bacteria are collectively named amoeba resistant bacteria (ARB). The best characterized example is Legionella pneumophila, for which FLA is the main reservoir in the environment. Not only could FLA be a reservoir that protects ARB, some bacteria might become more resistant to treatment and be more virulent. Thus, it is of medical significance to quantify FLA populations in soil, water or the environment. The main limitation for the quantification of FLA is that classical culture is not efficient and reliable for many genera and 'strains'. Thus, several PCR-based quantification methods have been published for various FLA. However, thus far, no method has been published to simultaneously quantify the main FLA genera in the same PCR reaction. In this study, we developed a multiplex qPCR method to detect both Amoebozoan (i.e. Acanthamoeba, Hartmannella and Echinamoeba) and Vahlkampfiidae (i.e. Vahlkampfia and Naegleria) using 18S ribosomal RNA as the target gene. This method was shown to be specific, reliable and sensitive, could be used for the quantification of FLA and is likely to be useful to anticipate risks due to FLA or pathogenic bacteria, such as L. pneumophila.


Subject(s)
Amoebozoa/genetics , Polymerase Chain Reaction/methods , Amoebozoa/isolation & purification , DNA, Bacterial/chemistry , RNA, Ribosomal, 18S/genetics , Soil Microbiology
7.
Eukaryot Cell ; 11(4): 382-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22366126

ABSTRACT

Free-living amoebae are protozoa found in soil and water. Among them, some are pathogenic and many have been described as potential reservoirs of pathogenic bacteria. Their cell cycle is divided into at least two forms, the trophozoite and the cyst, and the differentiation process is named encystment. As cysts are more resistant to disinfection treatments than trophozoites, many studies focused on encystment, but until recently, little was known about cellular, biochemical, and molecular modifications operating during this process. Important signals and signaling pathways at play during encystment, as well as cell responses at the molecular level, have been described. This review summarizes our knowledge and focuses on new findings.


Subject(s)
Amoeba/physiology , Trophozoites/physiology , Amoeba/metabolism , Amoeba/ultrastructure , Cell Wall/metabolism , Cytoskeleton/metabolism , Disinfection/methods , Peptide Hydrolases/metabolism , Protozoan Proteins/metabolism , Signal Transduction , Trophozoites/metabolism , Trophozoites/ultrastructure
8.
Water Sci Technol ; 64(3): 708-14, 2011.
Article in English | MEDLINE | ID: mdl-22097051

ABSTRACT

Legionella bacteria encounter optimum growing conditions in hot water systems and cooling towers. A pilot-scale 1 unit was built in order to study the biofilm disinfection. It consisted of two identical loops, one used as a control and the other as a 'Test Loop'. A combination of a bio-detergent and a biocide (hydrogen peroxide + peracetic acid) was applied in the Test Loop three times under the same conditions at 100 and 1,000 mg/L with a contact time of 24 and 3-6 hours, respectively. Each treatment test was preceded by a three week period of biofilm re-colonization. Initial concentrations of culturable Legionella into biofilm were close to 10(3) CFU/cm2. Results showed that culturable Legionella spp. in biofilm were no longer detectable three days following each treatment. evertheless, initial Legionella spp. concentrations were recovered 7 days after the treatments (in two cases). Before the tests, Legionella spp. and L. pneumophila PCR counts were both about 10(4) GU/cm2 in biofilm and they both decreased by 1 to 2 log units 72 hours after each treatment. The three tests had a good but transient efficiency on Legionella disinfection in biofilm.


Subject(s)
Biofilms , Disinfectants/pharmacology , Hot Temperature , Hydrogen Peroxide/pharmacology , Legionella/drug effects , Peracetic Acid/pharmacology , Water Microbiology , Pilot Projects , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...