Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(13): 133602, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37831996

ABSTRACT

We study the use of squeezed probe light and evasion of measurement backaction to enhance the sensitivity and measurement bandwidth of an optically pumped magnetometer (OPM) at sensitivity-optimal atom number density. By experimental observation, and in agreement with quantum noise modeling, a spin-exchange-limited OPM probed with off-resonance laser light is shown to have an optimal sensitivity determined by density-dependent quantum noise contributions. Application of squeezed probe light boosts the OPM sensitivity beyond this laser-light optimum, allowing the OPM to achieve sensitivities that it cannot reach with coherent-state probing at any density. The observed quantum sensitivity enhancement at optimal number density is enabled by measurement backaction evasion.

2.
Nat Commun ; 11(1): 2415, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415093

ABSTRACT

Quantum technologies use entanglement to outperform classical technologies, and often employ strong cooling and isolation to protect entangled entities from decoherence by random interactions. Here we show that the opposite strategy-promoting random interactions-can help generate and preserve entanglement. We use optical quantum non-demolition measurement to produce entanglement in a hot alkali vapor, in a regime dominated by random spin-exchange collisions. We use Bayesian statistics and spin-squeezing inequalities to show that at least 1.52(4) × 1013 of the 5.32(12) × 1013 participating atoms enter into singlet-type entangled states, which persist for tens of spin-thermalization times and span thousands of times the nearest-neighbor distance. The results show that high temperatures and strong random interactions need not destroy many-body quantum coherence, that collective measurement can produce very complex entangled states, and that the hot, strongly-interacting media now in use for extreme atomic sensing are well suited for sensing beyond the standard quantum limit.

3.
Phys Rev Lett ; 120(4): 040503, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29437429

ABSTRACT

We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensor's intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...