Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 4(10): 2706-2715, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31453690

ABSTRACT

Quality control is imperative for Cannabis since the primary cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), elicit very different pharmacological effects. THC/CBD ratios are currently determined by techniques not readily accessible by consumers or dispensaries and which are impractical for use in the field by law-enforcement agencies. CuPc- and F16-CuPc-based organic thin-film transistors have been combined with a cannabinoid-sensitive chromophore for the detection and differentiation of THC and CBD. The combined use of these well-characterized and inexpensive p- and n-type materials afforded the determination of the CBD/THC ratio from rapid plant extracts, with results indistinguishable from high-pressure liquid chromatography. Analysis of the prepyrolyzed sample accurately predicted postpyrolysis THC/CBD, which ultimately influences the psychotropic and medicinal effects of the specific plant. The devices were also capable of vapor-phase sensing, producing a unique electrical output for THC and CBD relative to other potentially interfering vaporized organic products. The analysis of complex medicinal plant extracts and vapors, normally reserved for advanced analytical infrastructure, can be achieved with ease, at low cost, and on the spot, using organic thin-film transistors.


Subject(s)
Cannabidiol/analysis , Dronabinol/analysis , Cannabidiol/chemistry , Copper/chemistry , Dronabinol/chemistry , Indoles/chemistry , Organometallic Compounds/chemistry , Plant Extracts/chemistry , Silanes/chemistry , Transistors, Electronic , Volatilization
2.
J Pharmacol Exp Ther ; 338(1): 290-301, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21487069

ABSTRACT

The prostaglandin D(2) (PGD(2)) receptor type 2 (DP2) is a G protein-coupled receptor that has been shown to be involved in a variety of allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis. In this study, we describe the preclinical pharmacological and pharmacokinetic properties of the small-molecule DP2 antagonist [2'-(3-benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (AM211). We determine that AM211 has high affinity for human, mouse, rat, and guinea pig DP2 and it shows selectivity over other prostanoid receptors and enzymes. Antagonist activity of AM211 at the DP2 receptor was confirmed by inhibition of PGD(2)-stimulated guanosine 5'-O-[γ-thio]triphosphate binding to membranes expressing human DP2. A basophil activation assay and a whole-blood assay of eosinophil shape change were used to demonstrate the ability of AM211 to potently antagonize PGD(2)-stimulated functional responses in relevant human cells and in the context of a physiologically relevant environment. AM211 exhibits good oral bioavailability in rats and dogs and dose-dependently inhibits 13,14-dihydro-15-keto-PGD(2)-induced leukocytosis in a guinea pig pharmacodynamic assay. AM211 demonstrates efficacy in two animal models of allergic inflammation, including an ovalbumin-induced lung inflammation model in guinea pigs and an ovalbumin-induced mouse model of allergic rhinitis. AM211 represents a potent and selective antagonist of DP2 that may be used clinically to evaluate the role of DP2 in T helper 2-driven allergic inflammatory diseases.


Subject(s)
Disease Models, Animal , Methylurea Compounds/therapeutic use , Phenylacetates/therapeutic use , Prostaglandin Antagonists/therapeutic use , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Rhinitis, Allergic, Perennial/drug therapy , Adult , Animals , Dogs , Female , Guinea Pigs , HEK293 Cells , Humans , Hypersensitivity/drug therapy , Hypersensitivity/immunology , Hypersensitivity/metabolism , Male , Methylurea Compounds/chemistry , Methylurea Compounds/pharmacology , Mice , Mice, Inbred BALB C , Phenylacetates/chemistry , Phenylacetates/pharmacology , Pneumonia/drug therapy , Pneumonia/immunology , Pneumonia/metabolism , Prostaglandin Antagonists/chemistry , Prostaglandin Antagonists/pharmacology , Protein Binding/physiology , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/immunology , Receptors, Prostaglandin/metabolism , Rhinitis, Allergic, Perennial/immunology , Rhinitis, Allergic, Perennial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...