Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Wellcome Open Res ; 5: 96, 2020.
Article in English | MEDLINE | ID: mdl-32766455

ABSTRACT

Tools and software that automate repetitive tasks, such as metadata extraction and deposition to data repositories, are essential for researchers to share Open Data, routinely. For research that generates microscopy image data, OMERO is an ideal platform for storage, annotation and publication according to open research principles. We present PyOmeroUpload, a Python toolkit for automatically extracting metadata from experiment logs and text files, processing images and uploading these payloads to OMERO servers to create fully annotated, multidimensional datasets. The toolkit comes packaged in portable, platform-independent Docker images that enable users to deploy and run the utilities easily, regardless of Operating System constraints. A selection of use cases is provided, illustrating the primary capabilities and flexibility offered with the toolkit, along with a discussion of limitations and potential future extensions. PyOmeroUpload is available from: https://github.com/SynthSys/pyOmeroUpload.

2.
PLoS One ; 9(5): e96462, 2014.
Article in English | MEDLINE | ID: mdl-24809473

ABSTRACT

A key step in the analysis of circadian data is to make an accurate estimate of the underlying period. There are many different techniques and algorithms for determining period, all with different assumptions and with differing levels of complexity. Choosing which algorithm, which implementation and which measures of accuracy to use can offer many pitfalls, especially for the non-expert. We have developed the BioDare system, an online service allowing data-sharing (including public dissemination), data-processing and analysis. Circadian experiments are the main focus of BioDare hence performing period analysis is a major feature of the system. Six methods have been incorporated into BioDare: Enright and Lomb-Scargle periodograms, FFT-NLLS, mFourfit, MESA and Spectrum Resampling. Here we review those six techniques, explain the principles behind each algorithm and evaluate their performance. In order to quantify the methods' accuracy, we examine the algorithms against artificial mathematical test signals and model-generated mRNA data. Our re-implementation of each method in Java allows meaningful comparisons of the computational complexity and computing time associated with each algorithm. Finally, we provide guidelines on which algorithms are most appropriate for which data types, and recommendations on experimental design to extract optimal data for analysis.


Subject(s)
Algorithms , Circadian Rhythm/physiology , Models, Theoretical , Periodicity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...