Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(10): 10G122, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399857

ABSTRACT

New X-ray imaging techniques are currently being developed at the "Commissariat à l'énergie atomique et aux énergies alternatives" in the context of Inertial Confinement Fusion. Fresnel zone plates (FZPs) are being considered as they can perform high-resolution and high-flux imaging in the X-ray domain. Here we present the characterization of a bi-lens FZPs resolution used in an imager prototype, designed for the LULI2000 laser facility. Characterization was performed on a synchrotron radiation facility and on a femtosecond laser facility. The resolution of the two FZP channels was measured to be between 2.4 µm and 5.2 µm and the expected total resolution for the diagnostic was to be 3.3 µm.

2.
Rev Sci Instrum ; 87(3): 033706, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27036783

ABSTRACT

The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

3.
Rev Sci Instrum ; 79(10): 10E904, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044559

ABSTRACT

A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed x-ray streak camera. The resulting streaked imager achieves spatial and temporal resolutions of approximately 5 microm and approximately 10 ps, respectively. The HXRI has recorded enhanced spatial and temporal resolution radiographs of indirectly driven targets on OMEGA. This paper describes the main features of the instrument and details the activation process on OMEGA (particularly the alignment). Recent results obtained on joint CEA/LLE radiographic OMEGA experiments will also be presented.

4.
Rev Sci Instrum ; 79(10): 10F301, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044614

ABSTRACT

The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.

6.
J Xray Sci Technol ; 5(2): 161-80, 1995 Jan 01.
Article in English | MEDLINE | ID: mdl-21307484

ABSTRACT

We present experimental and theoretical studies of the diffraction by an x-ray lamellar multilayer amplitude grating. The main diffraction properties of such a device are given. Experimental efficiency curves are obtained at 800 eV photon energy using synchrotron radiation. The features observed in these curves are identified and interpreted by means of two theoretical methods. Particular emphasis is given to structures observed for the first time which had been theoretically predicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...