Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 432(7019): 881-5, 2004 Dec 16.
Article in English | MEDLINE | ID: mdl-15602556

ABSTRACT

A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question is whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin-density-wave (SDW) type, or suddenly, as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (R(H))--a measure of the Fermi surface volume--in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. R(H) undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.

2.
Nature ; 424(6948): 524-7, 2003 Jul 31.
Article in English | MEDLINE | ID: mdl-12891349

ABSTRACT

The point at absolute zero where matter becomes unstable to new forms of order is called a quantum critical point (QCP). The quantum fluctuations between order and disorder that develop at this point induce profound transformations in the finite temperature electronic properties of the material. Magnetic fields are ideal for tuning a material as close as possible to a QCP, where the most intense effects of criticality can be studied. A previous study on the heavy-electron material YbRh2Si2 found that near a field-induced QCP electrons move ever more slowly and scatter off one another with ever increasing probability, as indicated by a divergence to infinity of the electron effective mass and scattering cross-section. But these studies could not shed light on whether these properties were an artefact of the applied field, or a more general feature of field-free QCPs. Here we report that, when germanium-doped YbRh2Si2 is tuned away from a chemically induced QCP by magnetic fields, there is a universal behaviour in the temperature dependence of the specific heat and resistivity: the characteristic kinetic energy of electrons is directly proportional to the strength of the applied field. We infer that all ballistic motion of electrons vanishes at a QCP, forming a new class of conductor in which individual electrons decay into collective current-carrying motions of the electron fluid.

3.
Phys Rev Lett ; 89(10): 107202, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12225219

ABSTRACT

We report a 29Si NMR study on aligned single crystals of YbRh2Si2 which shows behavior characteristic of a quantum critical point (QCP: T(N)-->0). The Knight shift K and the nuclear spin-lattice relaxation rate 1/T(1) of Si show a strong dependence on the external field H, especially below 5 kOe. At the lowest H used in this measurement (H approximately 1.5 kOe), it was found that 1/T(1)T continues to increase down to 50 mK, whereas K stays constant with a large magnitude below 200 mK. This result strongly suggests the development of antiferromagnetic fluctuations with finite q vectors that compete with q=0 spin fluctuations in the vicinity of the QCP near H=0.5 kOe.

4.
Phys Rev Lett ; 89(5): 056402, 2002 Jul 29.
Article in English | MEDLINE | ID: mdl-12144454

ABSTRACT

We report low-temperature calorimetric, magnetic, and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh(2)Si(2) ( T(N)=70 mK) as a function of magnetic field B. While for fields exceeding the critical value B(c0) at which T(N)-->0 the low-temperature resistivity shows an AT2 dependence, a 1/(B-B(c0)) divergence of A(B) upon reducing B to B(c0) suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.

5.
Phys Rev Lett ; 87(10): 106401, 2001 Sep 03.
Article in English | MEDLINE | ID: mdl-11531493

ABSTRACT

We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly correlated Ce system CeCu2Si2. By exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level E(F). We also present theoretical predictions based on the single-impurity Anderson model using an extended noncrossing approximation, including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu2Si2 can be described by single-impurity Kondo physics down to T approximately 5 K.

6.
Phys Rev Lett ; 85(3): 626-9, 2000 Jul 17.
Article in English | MEDLINE | ID: mdl-10991356

ABSTRACT

We report the first observation of non-Fermi-liquid (NFL) effects in a clean Yb compound at ambient pressure and zero magnetic field. The electrical resistivity and the specific-heat coefficient of high-quality single crystals of YbRh(2)Si(2) present a linear and a logarithmic temperature dependence, respectively, in more than a decade in temperature. We ascribe this NFL behavior to the presence of (presumably) quasi-2D antiferromagnetic spin fluctuations related to a very weak magnetic phase transition at T(N) approximately 65 mK. Application of hydrostatic pressure induces anomalies in the electrical resistivity, indicating the stabilization of magnetic order.

7.
8.
Phys Rev B Condens Matter ; 49(21): 15179-15183, 1994 Jun 01.
Article in English | MEDLINE | ID: mdl-10010624
SELECTION OF CITATIONS
SEARCH DETAIL
...