Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Hyperthermia ; 39(1): 1283-1293, 2022.
Article in English | MEDLINE | ID: mdl-36162814

ABSTRACT

BACKGROUND: In stereotactic radiosurgery, isodose lines must be considered to determine how surrounding tissue is affected. In thermal ablative therapy, such as laser interstitial thermal therapy (LITT), transcranial MR-guided focused ultrasound (tcMRgFUS), and needle-based therapeutic ultrasound (NBTU), how the surrounding area is affected has not been well studied. OBJECTIVE: We aimed to quantify the transition zone surrounding the ablation core created by magnetic resonance-guided robotically-assisted (MRgRA) delivery of NBTU using multi-slice volumetric 2-D magnetic resonance thermal imaging (MRTI) and subsequent characterization of the resultant tissue damage using histopathologic analysis. METHODS: Four swine underwent MRgRA NBTU using varying duration and wattage for treatment delivery. Serial MRI images were obtained, and the most representative were overlaid with isodose lines and compared to brain tissue acquired postmortem which underwent histopathologic analysis. These results were also compared to predicted volumes using a finite element analysis model. Contralateral brain tissue was used for control data. RESULTS: Intraoperative MRTI thermal isodose contours were characterized and comprehensively mapped to post-operative MRI images and qualitatively compared with histological tissue sections postmortem. NBTU 360° ablations induced smaller lesion volumes (33.19 mm3; 120 s, 3 W; 30.05 mm3, 180 s, 4 W) versus 180° ablations (77.20 mm3, 120 s, 3 W; 109.29 mm3; 180 s; 4 W). MRTI/MRI overlay demonstrated the lesion within the proximal isodose lines. The ablation-zone was characterized by dense macrophage infiltration and glial/neuronal loss as demonstrated by glial fibrillary acidic protein (GFAP) and neurofilament (NF) absence and avid CD163 staining. The transition-zone between lesion and normal brain demonstrated decreased macrophage infiltration and measured ∼345 microns (n - 3). We did not detect overt hemorrhages or signs of edema in the adjacent spared tissue. CONCLUSION: We successfully performed MRgRA NBTU ablation in swine and demonstrated minimal histologic changes extended past the ablation-zone. The lesion was characterized by macrophage infiltration and glial/neuronal loss which decreased through the transition-zone.


Subject(s)
Brain , Ultrasonic Therapy , Animals , Brain/diagnostic imaging , Brain/surgery , Glial Fibrillary Acidic Protein , Liver , Magnetic Resonance Imaging/methods , Swine
2.
Neurosci Lett ; 789: 136882, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36152743

ABSTRACT

BACKGROUND: Non-invasive, external low intensity focused ultrasound (liFUS) offers promise for treating neuropathic pain when applied to the dorsal root ganglion (DRG). OBJECTIVE: We examine how external liFUS treatment applied to the L5 DRG affects neuronal changes in single-unit activity from the primary somatosensory cortex (SI) and anterior cingulate cortex (ACC) in a common peroneal nerve injury (CPNI) rodent model. METHODS: Male Sprague Dawley rats were divided into two cohorts: CPNI liFUS and CPNI sham liFUS. Baseline single-unit activity (SUA) recordings were taken 20 min prior to treatment and for 4 h post treatment in 20 min intervals, then analyzed for frequency and compared to baseline. Recordings from the SI and ACC were separated into pyramidal and interneurons based on waveform and principal component analysis. RESULTS: Following CPNI surgery, all rats (n = 30) displayed a significant increase in mechanical sensitivity. In CPNI liFUS rats, there was a significant increase in pyramidal neuron spike frequency in the SI region compared to the CPNI sham liFUS animals beginning at 120 min following liFUS treatment (p < 0.05). In the ACC, liFUS significantly attenuated interneuron firing beginning at 80 min after liFUS treatment (p < 0.05). CONCLUSION: We demonstrate that liFUS changed neuronal spiking in the SI and ACC regions 80 and 120 min after treatment, respectively, which may in part correlate with improved sensory thresholds. This may represent a mechanism of action how liFUS attenuates neuropathic pain. Understanding the impact of liFUS on pain circuits will help advance the use of liFUS as a non-invasive neuromodulation option.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Male , Rats , Gyrus Cinguli , Neuralgia/therapy , Peripheral Nerve Injuries/therapy , Peroneal Nerve , Rats, Sprague-Dawley
3.
Neuromodulation ; 25(4): 504-510, 2022 06.
Article in English | MEDLINE | ID: mdl-35667768

ABSTRACT

OBJECTIVE: Chronic pain affects 7%-10% of Americans, occurs more frequently and severely in females, and available treatments have been shown to have less efficacy in female patients. Preclinical models addressing sex-specific treatment differences in the treatment of chronic pain have been limited. Here we examine the sex-specific effects of low intensity focused ultrasound (liFUS) in a modified sciatic nerve injury (SNI) model. MATERIALS AND METHODS: A modified SNI performed by ligating the common peroneal nerve (CPN) was used to measure sensory, behavioral pain responses, and nerve conduction studies in female and male rats, following liFUS of the L5 dorsal root ganglion. RESULTS: Using the same dose of liFUS in females and males of the same weight, CPN latency immediately after treatment was increased for 50 min in females compared to 25 min in males (p < 0.001). Improvements in mechanical pain thresholds after liFUS lasted significantly longer in females (seven days; p < 0.05) compared to males (three days; p < 0.05). In females, there was a significant improvement in depression-like behavior as a result of liFUS (N = 5; p < 0.01); however, because males never developed depression-like behavior there was no change after liFUS treatment. CONCLUSIONS: Neuromodulation with liFUS has a greater effect in female rats on CPN latency, mechanical allodynia duration, and depression-like behavior. In order to customize neuromodulatory techniques for different patient phenotypes, it is essential to understand how they may alter sex-specific pathophysiologies.


Subject(s)
Chronic Pain , Neuralgia , Peripheral Nerve Injuries , Animals , Disease Models, Animal , Female , Humans , Hyperalgesia/etiology , Hyperalgesia/therapy , Male , Neuralgia/therapy , Peripheral Nerve Injuries/therapy , Peroneal Nerve/diagnostic imaging , Peroneal Nerve/injuries , Rats
4.
Int J Hyperthermia ; 38(1): 907-915, 2021.
Article in English | MEDLINE | ID: mdl-34148489

ABSTRACT

BACKGROUND: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods. OBJECTIVE: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU. METHODS: Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes. RESULTS: Data from the initial and third swine's ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from -0.149 cm3 to 0.252 cm3 with a mean difference of 0.052 ± 0.042 cm3 (11.1%). There was a high correlation between the MRTI and histology volumes (r2 = 0.831) with a strong linear relationship (r = 0.868). CONCLUSION: We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting.


Subject(s)
Brain Neoplasms , High-Intensity Focused Ultrasound Ablation , Ultrasonic Therapy , Animals , Brain/diagnostic imaging , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Swine
5.
Front Pain Res (Lausanne) ; 2: 775210, 2021.
Article in English | MEDLINE | ID: mdl-35295478

ABSTRACT

Approximately 100 million adults in the United States have chronic pain, though only a subset utilizes the vast majority of healthcare resources. Multidisciplinary care has been shown to improve outcomes in a variety of clinical conditions. There is concern that multidisciplinary care of chronic pain patients may overwhelm existing resources and increase healthcare utilization due to the volume of patients and the complexity of care. We report our findings on the use of multidisciplinary conferences (MDC) to facilitate care for the most complex patients seen at our tertiary center. Thirty-two of nearly 2,000 patients seen per year were discussed at the MDC, making up the top 2% of complex patients in our practice. We evaluated patients' numeric rating score (NRS) of pain, medication use, hospitalizations, emergency department visits, and visits to pain specialists prior to their enrollment in MDC and 1 year later. Matched samples were compared using Wilcoxon's signed rank test. Patients' NRS scores significantly decreased from 7.64 to 5.54 after inclusion in MDC (p < 0.001). A significant decrease in clinic visits (p < 0.001) and healthcare utilization (p < 0.05) was also observed. Opioid and non-opioid prescriptions did not change significantly (p = 0.43). 83% of providers agreed that MDC improved patient care. While previous studies have shown the effect of multi-disciplinary care, we show notable improvements with a team established around a once-a-month MDC.

6.
Oncotarget ; 8(45): 78340-78350, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-29108233

ABSTRACT

Previous studies have now well-established that epithelial cancer cells can utilize ketone bodies (3-hydroxybutyrate and aceto-acetate) as mitochondrial fuels, to actively promote tumor growth and metastatic dissemination. The two critical metabolic enzymes implicated in this process are OXCT1 and ACAT1, which are both mitochondrial proteins. Importantly, over-expression of OXCT1 or ACAT1 in human breast cancer cells is sufficient to genetically drive tumorigenesis and/or lung metastasis, validating that they indeed behave as metabolic "tumor promoters". Here, we decided to target these two enzymes, which give cancer cells the ability to recycle ketone bodies into Acetyl-CoA and, therefore, to produce increased ATP. Briefly, we used computational chemistry (in silico drug design) to select a sub-set of potentially promising compounds that spatially fit within the active site of these enzymes, based on their known 3D crystal structures. These libraries of compounds were then phenotypically screened for their effects on total cellular ATP levels. Positive hits were further validated by metabolic flux analysis. Our results indicated that four of these compounds effectively inhibited mitochondrial oxygen consumption. Two of these compounds also induced a reactive glycolytic phenotype in cancer cells. Most importantly, using the mammosphere assay, we showed that these compounds can be used to functionally inhibit cancer stem cell (CSC) activity and propagation. Finally, our molecular modeling studies directly show how these novel compounds are predicted to bind to the active catalytic sites of OXCT1 and ACAT1, within their Coenzyme A binding site. As such, we speculate that these mitochondrial inhibitors are partially mimicking the structure of Coenzyme A. Thus, we conclude that OXCT1 and ACAT1 are important new therapeutic targets for further drug development and optimization. We propose that this new class of drugs should be termed "mitoketoscins", to reflect that they were designed to target ketone re-utilization and mitochondrial function.

7.
Oncotarget ; 8(40): 67457-67472, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978045

ABSTRACT

The "endo-symbiotic theory of mitochondrial evolution" states that mitochondrial organelles evolved from engulfed aerobic bacteria, after millions of years of symbiosis and adaptation. Here, we have exploited this premise to design new antibiotics and novel anti-cancer therapies, using a convergent approach. First, virtual high-throughput screening (vHTS) and computational chemistry were used to identify novel compounds binding to the 3D structure of the mammalian mitochondrial ribosome. The resulting library of ∼880 compounds was then subjected to phenotypic drug screening on human cancer cells, to identify which compounds functionally induce ATP-depletion, which is characteristic of mitochondrial inhibition. Notably, the top ten "hit" compounds define four new classes of mitochondrial inhibitors. Next, we further validated that these novel mitochondrial inhibitors metabolically target mitochondrial respiration in cancer cells and effectively inhibit the propagation of cancer stem-like cells in vitro. Finally, we show that these mitochondrial inhibitors possess broad-spectrum antibiotic activity, preventing the growth of both gram-positive and gram-negative bacteria, as well as C. albicans - a pathogenic yeast. Remarkably, these novel antibiotics also were effective against methicillin-resistant Staphylococcus aureus (MRSA). Thus, this simple, yet systematic, approach to the discovery of mitochondrial ribosome inhibitors could provide a plethora of anti-microbials and anti-cancer therapies, to target drug-resistance that is characteristic of both i) tumor recurrence and ii) infectious disease. In summary, we have successfully used vHTS combined with phenotypic drug screening of human cancer cells to identify several new classes of broad-spectrum antibiotics that target both bacteria and pathogenic yeast. We propose the new term "mitoriboscins" to describe these novel mitochondrial-related antibiotics. Thus far, we have identified four different classes of mitoriboscins, such as: 1) mitoribocyclines, 2) mitoribomycins, 3) mitoribosporins and 4) mitoribofloxins. However, we broadly define mitoriboscins as any small molecule(s) or peptide(s) that bind to the mitoribosome (large or small subunits) and, as a consequence, inhibit mitochondrial function, i.e., mitoribosome inhibitors.

8.
Antimicrob Agents Chemother ; 55(5): 2413-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21321139

ABSTRACT

We explored the properties of corallopyronin A (CorA), a poorly characterized inhibitor of bacterial RNA polymerase (RNAP). It displayed a 50% inhibitory concentration of 0.73 µM against RNAP, compared with 11.5 nM for rifampin. The antibacterial activity of CorA was also inferior to rifampin, and resistant mutants of Staphylococcus aureus were easily selected. The mutations conferring resistance resided in the rpoB and rpoC subunits of RNAP. We conclude that CorA is not a promising antibacterial drug candidate.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Lactones/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Microbial Sensitivity Tests , Mutation , Rifampin/pharmacology , Staphylococcus aureus/genetics
9.
ACS Med Chem Lett ; 2(10): 729-34, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-24900260

ABSTRACT

Bacterial RNA polymerase (RNAP) is essential for transcription and is an antibacterial target for small molecule inhibitors. The binding region of myxopyronin B (MyxB), a bacterial RNAP inhibitor, offers the possibility of new inhibitor design. The molecular design program SPROUT has been used in conjunction with the X-ray cocrystal structure of Thermus thermophilus RNAP with MyxB to design novel inhibitors based on a substituted pyridyl-benzamide scaffold. A series of molecules, with molecular masses <350 Da, have been prepared using a simple synthetic approach. A number of these compounds inhibited Escherichia coli RNAP.

10.
Antimicrob Agents Chemother ; 54(10): 4506-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660693

ABSTRACT

Previous studies suggest that furanyl-rhodanines might specifically inhibit bacterial RNA polymerase (RNAP). We further explored three compounds from this class. Although they inhibited RNAP, each compound also inhibited malate dehydrogenase and chymotrypsin. Using biosensors responsive to inhibition of macromolecular synthesis and membrane damaging assays, we concluded that in bacteria, one compound inhibited DNA synthesis and another caused membrane damage. The third rhodanine lacked antibacterial activity. We consider furanyl-rhodanines to be unattractive RNAP inhibitor drug candidates.


Subject(s)
Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Rhodanine/adverse effects , Rhodanine/pharmacology , Cell Membrane/drug effects , Chymotrypsin/antagonists & inhibitors , Malate Dehydrogenase/antagonists & inhibitors
11.
J Hepatol ; 49(6): 908-15, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845353

ABSTRACT

BACKGROUND/AIMS: The development of new therapies for hepatitis C virus (HCV) infection has been hampered by the lack of a small animal model. GB virus B (GBV-B), which infects new world monkeys, has been proposed as a surrogate system for HCV replication. Despite their short genetic distance, however, difficulties exist when extrapolating results from GBV-B to the HCV system. One way of addressing this is the creation of chimeric GBV-B containing HCV elements. METHODS: Construction and analysis of GBV-B chimeras in which the p13 ion channel was replaced by its HCV counterpart, p7. RESULTS: Replacing all, or part of, the GBV-B p13 protein with HCV p7 resulted in viable chimeras which replicated at wild-type levels in marmosets following intra-hepatic RNA injection. Serum from one animal injected with chimeric RNA was infectious in three naïve recipients, indicating that chimeras formed fully infectious virions. Amantadine, which blocks the ion channel activity of both HCV and GBV-B proteins in vitro, also inhibited GBV-B replication in primary hepatocytes. CONCLUSIONS: These viruses highlight the potential for chimeric GBV-B in the development of HCV-specific therapies and will provide a means of developing HCV p7 as a therapeutic target.


Subject(s)
GB virus B/genetics , Hepacivirus/genetics , Hepatitis C, Chronic/virology , Recombinant Fusion Proteins/genetics , Viral Proteins/genetics , Amantadine/pharmacology , Animals , Antiviral Agents/pharmacology , Callithrix , Cell Line , Disease Models, Animal , Drug Design , Genome, Viral , Hepatitis C, Chronic/drug therapy , Hepatocytes/cytology , Hepatocytes/virology , Humans , Kidney/cytology , RNA, Viral/blood , RNA, Viral/genetics , Transfection
12.
J Mol Biol ; 326(4): 1025-35, 2003 Feb 28.
Article in English | MEDLINE | ID: mdl-12589751

ABSTRACT

Several crystal structures of the hepatitis C virus NS5B protein (genotype-1b, strain J4) complexed with metal ions, single-stranded RNA or nucleoside-triphosphates have been determined. These complexes illustrate how conserved amino acid side-chains, together with essential structural features within the active site, control nucleotide binding and likely mediate de-novo initiation. The incoming nucleotide interacts with several basic residues from an extension on the NS5B fingers domain, a beta-hairpin from the NS5B thumb domain and the C-terminal arm. The modular, bi-partite fingers domain carries a long binding groove which guides the template towards the catalytic site. The apo-polymerase structure provides unprecedented insights into potential non-nucleoside inhibitor binding sites located between palm and thumb near motif E, which is unique to RNA polymerases and reverse transcriptases.


Subject(s)
Nucleotides/metabolism , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Binding Sites , Biological Transport/physiology , Crystallography, X-Ray , Hepacivirus/enzymology , Hepacivirus/genetics , Models, Molecular , Molecular Structure , Protein Binding , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...