Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 54(41): 6402-12, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26418890

ABSTRACT

KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR structure of KCNE1 in micelles.


Subject(s)
Lipid Bilayers/chemistry , Potassium Channels, Voltage-Gated/chemistry , Amino Acid Sequence , Electron Spin Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Potassium Channels, Voltage-Gated/genetics , Protein Conformation
2.
Biochemistry ; 52(38): 6627-32, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-23984855

ABSTRACT

Pulsed EPR DEER structural studies of membrane proteins in a lipid bilayer have often been hindered by difficulties in extracting accurate distances when compared to those of globular proteins. In this study, we employed a combination of three recently developed methodologies, (1) bifunctional spin labels (BSL), (2) SMA-Lipodisq nanoparticles, and (3) Q band pulsed EPR measurements, to obtain improved signal sensitivity, increased transverse relaxation time, and more accurate and precise distances in DEER measurements on the integral membrane protein KCNE1. The KCNE1 EPR data indicated an ∼2-fold increase in the transverse relaxation time for the SMA-Lipodisq nanoparticles when compared to those of proteoliposomes and narrower distance distributions for the BSL when compared to those of the standard MTSL. The certainty of information content in DEER data obtained for KCNE1 in SMA-Lipodisq nanoparticles is comparable to that in micelles. The combination of techniques will enable researchers to potentially obtain more precise distances in cases where the traditional spin labels and membrane systems yield imprecise distance distributions.


Subject(s)
Membrane Proteins/chemistry , Potassium Channels, Voltage-Gated/chemistry , Cyclic N-Oxides , Electron Spin Resonance Spectroscopy/methods , Lipid Bilayers , Mesylates , Nanoparticles , Potassium Channels, Voltage-Gated/genetics , Spin Labels
3.
J Phys Chem B ; 116(36): 11041-5, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22908896

ABSTRACT

This paper reports on a significant improvement of a new structural biology approach designed to probe the secondary structure of membrane proteins using the pulsed EPR technique of electron spin echo envelope modulation (ESEEM) spectroscopy. Previously, we showed that we could characterize an α-helical secondary structure with ESEEM spectroscopy using a (2)H-labeled Val side chain coupled with site-directed spin-labeling (SDSL). In order to further develop this new approach, molecular dynamic (MD) simulations were conducted on several different hydrophobic residues that are commonly found in membrane proteins. (2)H-SL distance distributions from the MD results indicated that (2)H-labeled Leu was a very strong candidate to significantly improve this ESEEM approach. In order to test this hypothesis, the secondary structure of the α-helical M2δ peptide of the acetylcholine receptor (AChR) incorporated into a bicelle was investigated with (2)H-labeled Leu d(10) at position 10 (i) and nitroxide spin labels positioned 1, 2, 3, and 4 residues away (denoted i+1 to i+4) with ESEEM spectroscopy. The ESEEM data reveal a unique pattern that is characteristic of an α-helix (3.6 residues per turn). Strong (2)H modulation was detected for the i+3 and i+4 samples, but not for the i+2 sample. The (2)H modulation depth observed for (2)H-labeled d(10) Leu was significantly enhanced (×4) when compared to previous ESEEM measurements that used (2)H-labeled d(8) Val. Computational studies indicate that deuterium nuclei on the Leu side chain are closer to the spin label when compared to Val. The enhancement of (2)H modulation and the corresponding Fourier Transform (FT) peak intensity for (2)H-labeled Leu significantly reduces the ESEEM data acquisition time for Leu when compared to Val. This research demonstrates that a different (2)H-labeled amino acid residue can be used as an efficient ESEEM probe further substantiating this important biophysical technique. Finally, this new method can provide pertinent qualitative structural information on membrane proteins in a short time (few minutes) at low sample concentrations (~50 µM).


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Fish Proteins/chemistry , Peptides/chemistry , Receptors, Cholinergic/chemistry , Torpedo/metabolism , Amino Acid Sequence , Animals , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Structure, Secondary , Spin Labels
4.
Biochemistry ; 50(50): 10851-9, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22085289

ABSTRACT

KCNE1 (minK), found in the human heart and cochlea, is a transmembrane protein that modulates the voltage-gated potassium KCNQ1 channel. While KCNE1 has previously been the subject of extensive structural studies in lyso-phospholipid detergent micelles, key observations have yet to be confirmed and refined in lipid bilayers. In this study, a reliable method for reconstituting KCNE1 into lipid bilayer vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (POPG) was developed. Microinjection of the proteoliposomes into Xenopus oocytes expressing the human KCNQ1 (K(V)7.1) voltage-gated potassium channel led to nativelike modulation of the channel. Circular dichroism spectroscopy demonstrated that the percent helicity of KCNE1 is significantly higher for the protein reconstituted in lipid vesicles than for the previously described structure in 1.0% 1-myristoyl-2-hydroxy-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (LMPG) micelles. SDSL electron paramagnetic resonance spectroscopic techniques were used to probe the local structure and environment of Ser28, Phe54, Phe57, Leu59, and Ser64 of KCNE1 in both POPC/POPG vesicles and LMPG micelles. Spin-labeled KCNE1 cysteine mutants at Phe54, Phe57, Leu59, and Ser64 were found to be located inside POPC/POPG vesicles, whereas Ser28 was found to be located outside the membrane. Ser64 was shown to be water inaccessible in vesicles but found to be water accessible in LMPG micelle solutions. These results suggest that key components of the micelle-derived structure of KCNE1 extend to the structure of this protein in lipid bilayers but also demonstrate the need to refine this structure using data derived from the bilayer-reconstituted protein to more accurately define its native structure. This work establishes the basis for such future studies.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/metabolism , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Circular Dichroism , Electron Spin Resonance Spectroscopy , Humans , Liposomes/chemistry , Liposomes/metabolism , Micelles , Microinjections , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oocytes/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Potassium Channels, Voltage-Gated/genetics , Protein Stability , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Xenopus laevis
5.
Protein Sci ; 20(7): 1100-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21563228

ABSTRACT

A new approach has been developed to probe the structural properties of membrane peptides and proteins using the pulsed electron paramagnetic resonance technique of electron spin echo envelope modulation (ESEEM) spectroscopy and the α-helical M2δ subunit of the acetylcholine receptor incorporated into phospholipid bicelles. To demonstrate the practicality of this method, a cysteine-mutated nitroxide spin label (SL) is positioned 1, 2, 3, and 4 residues away from a fully deuterated Val side chain (denoted i + 1 to i + 4). The characteristic periodicity of the α-helical structure gives rise to a unique pattern in the ESEEM spectra. In the i + 1 and i + 2 samples, the ²H nuclei are too far away to be detected. However, with the 3.6 residue per turn pattern of an α-helix, the i + 3 and i + 4 samples reveal a strong signal from the ²H nuclei of the Val side chain. Modeling studies verify these data suggesting that the closest ²H-labeled Val to SL distance would in fact be expected in the i + 3 and i + 4 samples. This technique is very advantageous, because it provides pertinent qualitative structural information on an inherently difficult system like membrane proteins in a short period of time (minutes) with small amounts of protein (µg).


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Fish Proteins/chemistry , Receptor, Muscarinic M2/chemistry , Torpedo/metabolism , Amino Acid Sequence , Animals , Molecular Sequence Data , Protein Structure, Secondary , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...