Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Cells ; 13(2)2024 01 10.
Article in English | MEDLINE | ID: mdl-38247821

ABSTRACT

In the mammalian isocortex, CD44, a cell surface receptor for extracellular matrix molecules, is present in pial-based and fibrous astrocytes of white matter but not in protoplasmic astrocytes. In the hominid isocortex, CD44+ astrocytes comprise the subpial "interlaminar" astrocytes, sending long processes into the cortex. The hippocampus also contains similar astrocytes. We have examined all levels of the human central nervous system and found CD44+ astrocytes in every region. Astrocytes in white matter and astrocytes that interact with large blood vessels but not with capillaries in gray matter are CD44+, the latter extending long processes into the parenchyma. Motor neurons in the brainstem and spinal cord, such as oculomotor, facial, hypoglossal, and in the anterior horn of the spinal cord, are surrounded by CD44+ processes, contrasting with neurons in the cortex, basal ganglia, and thalamus. We found CD44+ processes that intercalate between ependymal cells to reach the ventricle. We also found CD44+ astrocytes in the molecular layer of the cerebellar cortex. Protoplasmic astrocytes, which do not normally contain CD44, acquire it in pathologies like hypoxia and seizures. The pervasive and inducible expression of CD44 in astrocytes is a novel finding that lays the foundations for functional studies into the significance of CD44 in health and disease.


Subject(s)
Hyaluronan Receptors , Hypoxia , Seizures , Animals , Humans , Astrocytes , Hyaluronan Receptors/metabolism , Hypoxia/metabolism , Neocortex , Seizures/metabolism , White Matter
2.
Front Neurosci ; 17: 1209527, 2023.
Article in English | MEDLINE | ID: mdl-37449272

ABSTRACT

Purpose: Retinal vein occlusion (RVO) is a sight-threatening condition typically treated with intravitreal injection of vascular endothelial growth factor (VEGF) antagonists. Treatment response to anti-VEGF therapies is highly variable, with poor visual outcomes and treatment response in patients with significant retinal nonperfusion following RVO. Recently, caspase-9 has been identified as a potent regulator of edema, gliosis, and neuronal dysfunction during acute retinal hypoxia. The purpose of this study was to compare the therapeutic effect of caspase-9 inhibition against VEGF-neutralization in an established mouse model of RVO. Methods: Adult male C57Bl/6 J mice were randomized to induction of RVO and treatment with either vehicle, intravitreal injection of anti-VEGF antibody, topical administration of a selective caspase-9 inhibitor (Pen1-XBir3), or a combination therapy. Animals were followed on days 1, 2, and 8 after RVO with fundus retinal imaging, and with optical coherence tomography (OCT) to capture retinal swelling, capillary nonperfusion (measured by disorganization of retinal inner layers, DRIL), hyperreflective foci (HRF), and retinal atrophy. Focal electroretinography (ERG) measurements were performed on day 7. Histology was performed on retinal sections from day 8. Results: Both VEGF neutralization and caspase-9 inhibition showed significant retinal protection from RVO compared to vehicle treatment arm. Retinal reperfusion of occluded veins was accelerated in eyes receiving caspase-9 inhibitor, but not significantly different from vehicle in the anti-VEGF group. Retinal edema was suppressed in all treatment groups, with approximately 2-fold greater edema reduction with caspase-9 inhibition compared to VEGF neutralization. HRF were reduced similarly across all treatment groups compared to vehicle. Retinal detachment was reduced only in eyes treated with caspase-9 inhibitor monotherapy. Caspase-9 inhibition reduced retinal atrophy and preserved ERG response; VEGF neutralization did not prevent neurodegeneration following RVO. Conclusion: Caspase-9 inhibition confers stronger neuronal and vascular protection compared to VEGF neutralization in the mouse laser-induced model of RVO.

3.
Cell Death Dis ; 13(11): 937, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347836

ABSTRACT

Retinal neurovascular injuries are a leading cause of vision loss in young adults presenting unmet therapeutic needs. Neurovascular injuries damage homeostatic communication between endothelial, pericyte, glial, and neuronal cells through signaling pathways that remain to be established. To understand the mechanisms that contribute to neuronal death, we use a mouse model of retinal vein occlusion (RVO). Using this model, we previously discovered that after vascular damage, there was non-apoptotic activation of endothelial caspase-9 (EC Casp9); knock-out of EC Casp9 led to a decrease in retinal edema, capillary ischemia, and neuronal death. In this study, we aimed to explore the role of EC Casp9 in vision loss and inflammation. We found that EC Casp9 is implicated in contrast sensitivity decline, induction of inflammatory cytokines, and glial reactivity. One of the noted glial changes was increased levels of astroglial cl-caspase-6, which we found to be activated cell intrinsically by astroglial caspase-9 (Astro Casp9). Lastly, we discovered that Astro Casp9 contributes to capillary ischemia and contrast sensitivity decline after RVO (P-RVO). These findings reveal specific endothelial and astroglial non-apoptotic caspase-9 roles in inflammation and neurovascular injury respectively; and concomitant relevancy to contrast sensitivity decline.


Subject(s)
Contrast Sensitivity , Retinal Vein Occlusion , Mice , Animals , Caspase 9/genetics , Caspase 9/metabolism , Retinal Vein Occlusion/etiology , Retinal Vein Occlusion/metabolism , Inflammation/metabolism , Ischemia/metabolism , Caspase 3/metabolism
4.
Cell Death Dis ; 13(11): 959, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379916

ABSTRACT

Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with ß-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Peptidomimetics , Humans , Caspase 2/metabolism , Caspase 3/metabolism , Neurons/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Peptidomimetics/pharmacology , Peptidomimetics/metabolism
6.
Transl Vis Sci Technol ; 11(8): 5, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35921115

ABSTRACT

Purpose: To characterize postnatal ocular pathology in a Ndufs4-/- mouse model of complex I deficiency using noninvasive retinal imaging and visual testing. Methods: Ndufs4-/- mice and wild-type (WT) littermates were analyzed at 3, 5, and 7 weeks postnatal. Retinal morphology was visualized by optical coherence tomography (OCT). OCT images were analyzed for changes in retinal thickness and reflectivity profiles. Visual function was assessed by electroretinogram (ERG) and optomotor reflex (OMR). Results: Ndufs4-/- animals have normal OCT morphology at weaning and develop inner plexiform layer atrophy over weeks 5 to 7. Outer retinal layers show hyporeflectivity of the external limiting membrane (ELM) and photoreceptor ellipsoid zone (EZ). Retinal function is impaired at 3 weeks, with profound deficits in b-wave, a-wave, and oscillatory potential amplitudes. The b-wave and oscillatory potential implicit times are delayed, but the a-wave implicit time is unaffected. Ndufs4-/- animals have normal OMR at 3 weeks and present with increasing acuity and contrast OMR deficits at 5 and 7 weeks. Physiological thinning of inner retinal layers, attenuation of ELM reflectivity, and attenuation of ERG b- and a-wave amplitudes occur in WT C57BL/6 littermates between weeks 3 and 7. Conclusions: Noninvasive ocular imaging captures early-onset retinal degeneration in Ndufs4-/- mice and is a tractable approach for investigating retinal pathology subsequent to complex I deficiency. Translational Relevance: Ophthalmic imaging captures clinically relevant measures of retinal disease in a fast-progressing mouse model of complex I deficiency consistent with human Leigh syndrome.


Subject(s)
Mitochondrial Diseases , Retinal Degeneration , Animals , Disease Models, Animal , Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Electroretinography , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Diseases/diagnostic imaging , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology
7.
J Vis Exp ; (185)2022 07 25.
Article in English | MEDLINE | ID: mdl-35938825

ABSTRACT

The family of caspases is known to mediate many cellular pathways beyond cell death, including cell differentiation, axonal pathfinding, and proliferation. Since the identification of the family of cell death proteases, there has been a search for tools to identify and expand the function of specific family members in development, health, and disease states. However, many of the currently commercially available caspase tools that are widely used are not specific for the targeted caspase. In this report, we delineate the approach we have used to identify, validate, and target caspase-9 in the nervous system using a novel inhibitor and genetic approaches with immunohistochemical read-outs. Specifically, we used the retinal neuronal tissue as a model to identify and validate the presence and function of caspases. This approach enables the interrogation of cell-type specific apoptotic and non-apoptotic caspase-9 functions and can be applied to other complex tissues and caspases of interest. Understanding the functions of caspases can help to expand current knowledge in cell biology, and can also be advantageous to identify potential therapeutic targets due to their involvement in disease.


Subject(s)
Caspases , Retina , Apoptosis , Caspase 3/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cell Differentiation , Nervous System , Retina/metabolism
8.
J Vis Exp ; (182)2022 04 21.
Article in English | MEDLINE | ID: mdl-35532239

ABSTRACT

Advancements in ophthalmic imaging tools offer an unprecedented level of access to researchers working with animal models of neurovascular injury. To properly leverage this greater translatability, there is a need to devise reproducible methods of drawing quantitative data from these images. Optical coherence tomography (OCT) imaging can resolve retinal histology at micrometer resolution and reveal functional differences in vascular blood flow. Here, we delineate noninvasive vascular readouts that we use to characterize pathological damage post vascular insult in an optimized mouse model of retinal vein occlusion (RVO). These readouts include live imaging analysis of retinal morphology, disorganization of retinal inner layers (DRIL) measure of capillary ischemia, and fluorescein angiography measures of retinal edema and vascular density. These techniques correspond directly to those used to examine patients with retinal disease in the clinic. Standardizing these methods enables direct and reproducible comparison of animal models with clinical phenotypes of ophthalmic disease, increasing the translational power of vascular injury models.


Subject(s)
Vascular System Injuries , Animals , Humans , Mice , Reproducibility of Results , Retina/diagnostic imaging , Retina/pathology , Retinal Vessels/diagnostic imaging , Retrospective Studies , Tomography, Optical Coherence/methods , Vascular System Injuries/pathology , Visual Acuity
9.
J Vis Exp ; (174)2021 08 06.
Article in English | MEDLINE | ID: mdl-34424250

ABSTRACT

Mouse models of retinal vein occlusion (RVO) are often used in ophthalmology to study hypoxic-ischemic injury in the neural retina. In this report, a detailed method pointing out critical steps is provided with recommendations for optimization to achieve consistently successful occlusion rates across different genetically modified mouse strains. The RVO mouse model consists primarily of the intravenous administration of a photosensitizer dye followed by laser photocoagulation using a retinal imaging microscope attached to an ophthalmic guided laser. Three variables were identified as determinants of occlusion consistency. By adjusting the wait time after rose bengal administration and balancing the baseline and experimental laser output, the variability across experiments can be limited and a higher success rate of occlusions achieved. This method can be used to study retinal diseases that are characterized by retinal edema and hypoxic-ischemic injury. Additionally, as this model induces vascular injury, it can also be applied to study the neurovasculature, neuronal death, and inflammation.


Subject(s)
Retinal Vein Occlusion , Animals , Disease Models, Animal , Hypoxia , Mice , Retina , Rose Bengal
10.
Front Pharmacol ; 12: 701301, 2021.
Article in English | MEDLINE | ID: mdl-34305609

ABSTRACT

Caspase-9, a cysteine-aspartic protease known for its role as an initiator of intrinsic apoptosis, regulates physiological cell death and pathological tissue degeneration. Its nonapoptotic functions, including regulation of cellular differentiation/maturation, innate immunity, mitochondrial homeostasis, and autophagy, reveal a multimodal landscape of caspase-9 functions in health and disease. Recent work has demonstrated that caspase-9 can drive neurovascular injury through nonapoptotic endothelial cell dysfunction. CASP9 polymorphisms have been linked with various cancers, neurological disorders, autoimmune pathologies and lumbar disc disease. Clinical reports suggest alterations in caspase-9 expression, activity or function may be associated with acute and chronic neurodegeneration, retinal neuropathy, slow-channel myasthenic syndrome, lumbar disc disease, cardiomyopathies, atherosclerosis and autoimmune disease. Healthy tissues maintain caspase-9 activity at low basal levels, rendering supraphysiological caspase-9 activation a tractable target for therapeutic interventions. Strategies for selective inhibition of caspase-9 include dominant negative caspase-9 mutants and pharmacological inhibitors derived from the XIAP protein, whose Bir3 domain is an endogenous highly selective caspase-9 inhibitor. However, the mechanistic implications of caspase-9 expression and activation remain indeterminate in many pathologies. By assembling clinical reports of caspase-9 genetics, signaling and cellular localization in human tissues, this review identifies gaps between experimental and clinical studies on caspase-9, and presents opportunities for further investigations to examine the consequences of caspase activity in human disease.

12.
ASN Neuro ; 12: 1759091420930865, 2020.
Article in English | MEDLINE | ID: mdl-32493127

ABSTRACT

The p75 neurotrophin receptor (p75NTR) can regulate multiple cellular functions including proliferation, survival, and apoptotic cell death. The p75NTR is widely expressed in the developing brain and is downregulated as the nervous system matures, with only a few neuronal subpopulations retaining expression into adulthood. However, p75NTR expression is induced following damage to the adult brain, including after traumatic brain injury, which is a leading cause of mortality and disability worldwide. A major consequence of traumatic brain injury is the progressive neuronal loss that continues secondary to the initial trauma, which ultimately contributes to cognitive decline. Understanding mechanisms governing this progressive neuronal death is key to developing targeted therapeutic strategies to provide neuroprotection and salvage cognitive function. In this study, we demonstrate that a cortical impact injury to the sensorimotor cortex elicits p75NTR expression in apoptotic neurons in the injury penumbra, confirming previous studies. To establish whether preventing p75NTR induction or blocking the ligands would reduce the extent of secondary neuronal cell death, we used a noninvasive intranasal strategy to deliver either siRNA to block the induction of p75NTR, or function-blocking antibodies to the ligands pro-nerve growth factor and pro-brain-derived neurotrophic factor. We demonstrate that either preventing the induction of p75NTR or blocking the proneurotrophin ligands provides neuroprotection and preserves sensorimotor function.


Subject(s)
Apoptosis/physiology , Brain Injuries, Traumatic/metabolism , Neurons/metabolism , Receptors, Nerve Growth Factor/biosynthesis , Administration, Intranasal/methods , Animals , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Cell Death/physiology , Gene Knockdown Techniques/methods , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , RNA, Small Interfering/administration & dosage , Receptors, Nerve Growth Factor/antagonists & inhibitors
13.
Nat Commun ; 11(1): 3173, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576823

ABSTRACT

Central nervous system ischemic injury features neuronal dysfunction, inflammation and breakdown of vascular integrity. Here we show that activation of endothelial caspase-9 after hypoxia-ischemia is a critical event in subsequent dysfunction of the blood-retina barrier, using a panel of interrelated ophthalmic in vivo imaging measures in a mouse model of retinal vein occlusion (RVO). Rapid nonapoptotic activation of caspase-9 and its downstream effector caspase-7 in endothelial cells promotes capillary ischemia and retinal neurodegeneration. Topical eye-drop delivery of a highly selective caspase-9 inhibitor provides morphological and functional retinal protection. Inducible endothelial-specific caspase-9 deletion phenocopies this protection, with attenuated retinal edema, reduced inflammation and preserved neuroretinal morphology and function following RVO. These results reveal a non-apoptotic function of endothelial caspase-9 which regulates blood-retina barrier integrity and neuronal survival, and identify caspase-9 as a therapeutic target in neurovascular disease.


Subject(s)
Caspase 9/metabolism , Hypoxia/metabolism , Ischemia/metabolism , Retinal Vein Occlusion/metabolism , Vascular System Injuries/metabolism , Animals , Blood-Retinal Barrier/metabolism , Caspase 7/metabolism , Caspase 9/drug effects , Caspase 9/genetics , Cell Death , Disease Models, Animal , Endothelial Cells/metabolism , Female , Genetic Predisposition to Disease/genetics , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rabbits , Retina/metabolism , Retina/pathology , Retinal Vein Occlusion/drug therapy , Retinal Vein Occlusion/pathology , Vascular System Injuries/pathology
14.
Nat Med ; 22(11): 1207-1208, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824824
15.
Am J Hum Genet ; 99(5): 1117-1129, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27773430

ABSTRACT

Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a "thin" lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-ß-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD's ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.


Subject(s)
Apoptosis , CRADD Signaling Adaptor Protein/genetics , Caspase 2/metabolism , Cysteine Endopeptidases/metabolism , Lissencephaly/genetics , Megalencephaly/genetics , Neurons/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Caspase 2/genetics , Cell Survival , Cloning, Molecular , Cognition , Cysteine Endopeptidases/genetics , Dendritic Cells/metabolism , Ethnicity/genetics , Genes, Recessive , Genome-Wide Association Study , HEK293 Cells , Humans , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , PC12 Cells , Rats , Signal Transduction
16.
J Vis Exp ; (100): e52805, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26132278

ABSTRACT

Alzheimer's disease is a neurodegenerative disease affecting the aging population. A key neuropathological feature of the disease is the over-production of amyloid-beta and the deposition of amyloid-beta plaques in brain regions of the afflicted individuals. Throughout the years scientists have generated numerous Alzheimer's disease mouse models that attempt to replicate the amyloid-beta pathology. Unfortunately, the mouse models only selectively mimic the disease features. Neuronal death, a prominent effect in the brains of Alzheimer's disease patients, is noticeably lacking in these mice. Hence, we and others have employed a method of directly infusing soluble oligomeric species of amyloid-beta - forms of amyloid-beta that have been proven to be most toxic to neurons - stereotaxically into the brain. In this report we utilize male C57BL/6J mice to document this surgical technique of increasing amyloid-beta levels in a select brain region. The infusion target is the dentate gyrus of the hippocampus because this brain structure, along with the basal forebrain that is connected by the cholinergic circuit, represents one of the areas of degeneration in the disease. The results of elevating amyloid-beta in the dentate gyrus via stereotaxic infusion reveal increases in neuron loss in the dentate gyrus within 1 week, while there is a concomitant increase in cell death and cholinergic neuron loss in the vertical limb of the diagonal band of Broca of the basal forebrain. These effects are observed up to 2 weeks. Our data suggests that the current amyloid-beta infusion model provides an alternative mouse model to address region specific neuron death in a short-term basis. The advantage of this model is that amyloid-beta can be elevated in a spatial and temporal manner.


Subject(s)
Amyloid beta-Peptides/administration & dosage , Hippocampus/drug effects , Hippocampus/surgery , Neurons/drug effects , Peptide Fragments/administration & dosage , Animals , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stereotaxic Techniques
17.
Neurotherapeutics ; 12(1): 42-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339539

ABSTRACT

Specific therapies for neurologic diseases such as Alzheimer's disease provide the potential for better clinical outcomes. Expression of caspases in the brain is developmentally regulated, and dysregulated in neurologic disease, supporting that caspases may be therapeutic targets. The activity of caspases is carefully regulated via binding partners, cleavage, or endogenous inhibitors to prevent spontaneous activation, which could lead to aberrant cell death. This review serves as a brief examination of the current understanding of the regulation and function of caspases, and approaches to specifically target aberrant caspase activity. The use of proper tools to investigate individual caspases is addressed. Moreover, it summarizes the reports of various caspases in Alzheimer's disease studies. A better understanding of specific caspase pathways in heath and neurodegenerative disease is crucial for identifying specific targets for the development of therapeutic interventions.


Subject(s)
Alzheimer Disease/enzymology , Caspases/metabolism , Neurodegenerative Diseases/pathology , Alzheimer Disease/pathology , Animals , Humans , Neurodegenerative Diseases/enzymology
18.
Invest Ophthalmol Vis Sci ; 55(10): 6350-7, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25190658

ABSTRACT

PURPOSE: Ocular trauma is common in civilian and military populations. Commotio retinae involves acute disruption of photoreceptor outer segments after blunt ocular trauma, with subsequent photoreceptor apoptosis causing permanent visual impairment. The mechanisms of photoreceptor death in commotio retinae have not previously been described, although caspase-dependent death is important in other nontraumatic retinal degenerations. We assessed the role of caspase-9 as a mediator of photoreceptor death in a rat model of ballistic ocular trauma causing commotio retinae. METHODS: Bilateral commotio retinae was induced in rats by ballistic ocular trauma. Caspase-9 activity was assessed by immunohistochemistry, Western blotting, and bVAD-fmk active caspase capture. Caspase-9 was inhibited by unilateral intravitreal injection of highly specific X-linked inhibitor of apoptosis (IAP) baculoviral IAP repeat 3 (XBIR3) domain linked to the cell transduction peptide penetratin 1 (Pen-1) after ballistic injury, and the affected eyes were compared with control eyes treated with Pen-1 injection alone, and retinal function was assessed by electroretinogram a-wave amplitude and photoreceptor survival by outer nuclear layer thickness. RESULTS: Increased levels of cleaved caspase-9 were shown in photoreceptors 5 hours after injury, and catalytically active full-length caspase-9 was isolated from retinas. Photoreceptor death after commotio retinae was reduced by caspase-9 inhibition by using Pen-1-XBIR3, and electroretinographic measurements of photoreceptor function was preserved, providing structural and functional neuroprotection. CONCLUSIONS: The time course of caspase-9 activation and the neuroprotective effects of inhibition suggest that caspase-9 initiates cell death in a proportion of photoreceptors after blunt ocular trauma and that an intravitreally delivered biologic inhibitor may be an effective translational treatment strategy.


Subject(s)
Apoptosis , Caspase 9/metabolism , Eye Injuries/pathology , Photoreceptor Cells, Vertebrate/pathology , Wounds, Nonpenetrating/pathology , Animals , Blotting, Western , Cell Survival , Cells, Cultured , Electroretinography , Enzyme Activation , Eye Injuries/metabolism , Female , Immunohistochemistry , In Situ Nick-End Labeling , Photoreceptor Cells, Vertebrate/enzymology , Rats , Tomography, Optical Coherence , Wounds, Nonpenetrating/enzymology
19.
Cell ; 158(5): 1159-1172, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171414

ABSTRACT

In Alzheimer's disease (AD) brain, exposure of axons to Aß causes pathogenic changes that spread retrogradely by unknown mechanisms, affecting the entire neuron. We found that locally applied Aß1-42 initiates axonal synthesis of a defined set of proteins including the transcription factor ATF4. Inhibition of local translation and retrograde transport or knockdown of axonal Atf4 mRNA abolished Aß-induced ATF4 transcriptional activity and cell loss. Aß1-42 injection into the dentate gyrus (DG) of mice caused loss of forebrain neurons whose axons project to the DG. Protein synthesis and Atf4 mRNA were upregulated in these axons, and coinjection of Atf4 siRNA into the DG reduced the effects of Aß1-42 in the forebrain. ATF4 protein and transcripts were found with greater frequency in axons in the brain of AD patients. These results reveal an active role for intra-axonal translation in neurodegeneration and identify ATF4 as a mediator for the spread of AD pathology.


Subject(s)
Activating Transcription Factor 4/analysis , Alzheimer Disease/pathology , Brain/pathology , Activating Transcription Factor 4/metabolism , Amyloid beta-Peptides/genetics , Animals , Axons/metabolism , Brain/cytology , Brain Chemistry , Eukaryotic Initiation Factor-2/metabolism , Hippocampus , Humans , Mice, Inbred C57BL , Rats , Transcription Factor CHOP/metabolism
20.
Brain ; 137(Pt 6): 1656-75, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24727569

ABSTRACT

We have previously shown that crushing the optic nerve induces death of retinal ganglion cells by apoptosis, but suppression of CASP2, which is predominantly activated in retinal ganglion cells, using a stably modified short interfering RNA CASP2, inhibits retinal ganglion cell apoptosis. Here, we report that combined delivery of short interfering CASP2 and inhibition of CASP6 using a dominant negative CASP6 mutant activates astrocytes and Müller cells, increases CNTF levels in the retina and leads to enhanced retinal ganglion cell axon regeneration. In dissociated adult rat mixed retinal cultures, dominant negative CASP6 mutant + short interfering CASP2 treatment also significantly increases GFAP+ glial activation, increases the expression of CNTF in culture, and subsequently increases the number of retinal ganglion cells with neurites and the mean retinal ganglion cell neurite length. These effects are abrogated by the addition of MAB228 (a monoclonal antibody targeted to the gp130 component of the CNTF receptor) and AG490 (an inhibitor of the JAK/STAT pathway downstream of CNTF signalling). Similarly, in the optic nerve crush injury model, MAB228 and AG490 neutralizes dominant negative CASP6 mutant + short interfering CASP2-mediated retinal ganglion cell axon regeneration, Müller cell activation and CNTF production in the retina without affecting retinal ganglion cell survival. We therefore conclude that axon regeneration promoted by suppression of CASP2 and CASP6 is CNTF-dependent and mediated through the JAK/STAT signalling pathway. This study offers insights for the development of effective therapeutics for promoting retinal ganglion cell survival and axon regeneration.


Subject(s)
Apoptosis/drug effects , Axons/metabolism , Caspase 2/metabolism , Caspase 6/metabolism , Ciliary Neurotrophic Factor/metabolism , Cysteine Endopeptidases/metabolism , Retinal Ganglion Cells/metabolism , Signal Transduction , Animals , Apoptosis/genetics , Disease Models, Animal , Female , Nerve Regeneration/drug effects , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Optic Nerve/metabolism , Optic Nerve Injuries/metabolism , Rats , Rats, Sprague-Dawley , Retinal Ganglion Cells/cytology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...