Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(15): 6571-6575, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572833

ABSTRACT

Structure-porosity relationships for metal-organic polyhedra (MOPs) are hardly investigated because they tend to be amorphized after activation, which inhibits crystallographic characterization. Here, we show a mixed-ligand strategy to statistically distribute two distinct carbazole-type ligands within rhodium-based octahedral MOPs, leading to systematic tuning of the microporosity in the resulting amorphous solids.

2.
Inorg Chem ; 63(12): 5559-5567, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38470047

ABSTRACT

Dinuclear ruthenium paddlewheel complexes exhibit high structural stability in redox reactions. The use of these chemical motifs for the construction of Ru-based metal-organic polyhedra (RuMOPs) provides a route for redox-active porous materials. However, there are few studies on the synthesis and characterization of RuMOPs due to the difficulty in controlling the assembly process via the ligand-exchange reaction of equatorial acetates of the diruthenium tetraacetate precursors with dicarboxylic acid ligands. In this study, we synthesized three novel cuboctahedral RuMOPs based on the Ru2(II/III)-paddlewheel units with different alkyl functionalizations on the benzene-1,3-dicarboxylate moieties. We evaluated the effect of external functionalization on the molecular packing and the porous and redox properties. The electrochemical measurements revealed the multielectron transferred redox process where the electron-donating/-withdrawing nature of the functional groups allows the control of the redox behavior.

3.
Chem Sci ; 14(35): 9543-9552, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712036

ABSTRACT

Supramolecular gels based on metal-organic polyhedra (MOPs) represent a versatile platform to access processable soft materials with controlled porosity. Herein, we report a self-gelation approach that allows the reversible assembly of a novel Ru-based MOP in the form of colloidal gels. The presence of cationic mixed-valence [Ru2(COO)4]+ paddlewheel units allows for modification of the MOP charge via acid/base treatment, and therefore, its solubility. This feature enables control over supramolecular interactions, making it possible to reversibly force MOP aggregation to form nanoparticles, which further assemble to form a colloidal gel network. The gelation process was thoroughly investigated by time-resolved ζ-potential, pH, and dynamic light scattering measurements. This strategy leads to the evolution of hierarchically porous aerogel from individual MOP molecules without using any additional component. Furthermore, we demonstrate that the simplicity of this method can be exploited for the obtention of MOP-based gels through a one-pot synthetic approach starting from MOP precursors.

4.
Chem Commun (Camb) ; 59(13): 1744-1756, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36661894

ABSTRACT

Shapeshifting materials have captured the imagination of researchers for their myriad potential applications, yet their practical development remains challenging. These materials operate by mechanical actuation: their structural responses to external stimuli generate mechanical work. Here, we review progress on the use of flexible metal-organic frameworks (MOFs) in composite actuators that shapeshift in a controlled fashion. We highlight the dynamic behaviour of flexible MOFs, which are unique among materials, even other porous ones, and introduce the concept of propagation, which involves the efficient transmission of flexible MOF deformations to the macroscale. Furthermore, we explain how researchers can observe, measure, and induce such effects in MOF composites. Next, we review pioneering first-generation MOF-composite actuators that shapeshift in response to changes in humidity, temperature, pressure, or to other stimuli. Finally, we allude to recent developments, identify remaining R & D hurdles, and suggest future directions in this field.

5.
J Am Chem Soc ; 144(42): 19475-19484, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36222467

ABSTRACT

Metal-organic polyhedra (MOPs) are molecular porous units in which desired functionalities can be installed with precise geometrical and compositional control. By combing two complementary chemical moieties, such as sulfonic acid groups and Rh(II)-carboxylate paddlewheel, we synthesized a robust water-soluble cuboctahedral MOP with excellent features in both solution and solid states. Herein, we demonstrate that the superior chemical stability of the Rh2 unit and the elevated number of functional groups on the surface (24 per cage) result in a porous cage with high solubility and stability in water, including acidic, neutral, and basic pH conditions. We also prove that the sulfonic acid-rich form of the cage can be isolated through postsynthetic acid treatment. This transformation involves an improved gas uptake capacity and the capability to reversibly assemble the cages into a three-dimensional (3D) metal-organic framework (MOF) structure. Likewise, this sulfonic acid functionalization provides both MOP and MOF solids with high proton conductivities (>10-3 S cm-1), comparable to previously reported high conducting metal-organic materials. The influence of the MOP-to-MOF processing in the gas adsorption capacity indicates that this structural transformation can provide materials with higher and more controllable porous properties. These results illustrate the high potential of acidic MOPs as more flexible porous building units in terms of processability, structural complexity, and tunability of the properties.

6.
Chem Soc Rev ; 51(12): 4876-4889, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35441616

ABSTRACT

There is growing interest in metal-organic cages (MOCs) as porous materials owing to their processability in solution. The discrete molecular character and surface features of MOCs have a direct impact on the interactions between cages, enabling the final physical state of the materials to be tuned. In this tutorial review, we discuss how to use MOCs as core building units, highlighting the role played by surface functionalisation of MOCs in leading to porous materials in a range of states covering crystalline solids, soft matter, liquids and composites. We finish by providing an outlook on the opportunities for this work to serve as a foundation for the development of increasingly complex functional porous materials structured over various length scales.

7.
Chem Soc Rev ; 50(7): 4606-4628, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33600546

ABSTRACT

The combination of the copper(i)-iodide entity with organic ligands gives rise to a large variety of CuII polynuclear structures in the form of molecular complexes or extended structures. An appropriate selection of these components allows the preparation of materials showing interesting physicochemical properties and potential applications, mainly focused on organic light-emitting diodes and optical sensors. The most prominent physical feature of these materials is their emission, which can be modulated using the chemical structure and composition. This review article collates the advances in this research field, rationalizing the information into two main blocks as a function of the dimensionality of the structures: molecular complexes and extended networks. We describe the most typical ways of preparation, structures, and properties, with particular attention to the processability of the material as a fundamental aspect of the integration of the materials into real devices. Therefore, we aim to integrate the basic elements of the coordination chemistry of CuII clusters from the materials science perspective to envision this promising research field's potential technological future.

8.
Dalton Trans ; 49(37): 13142-13151, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32935685

ABSTRACT

Herein we report the design, synthesis, structural characterisation and functional testing of a series of Cu(ii) coordination polymers containing flexible 4,4'-dithiodibenzoate ligand (4,4'-DTBA), with or without auxiliary N-donor ligands. Reaction of Cu(ii) with 4,4'-DTBA yielded a 1D coordination polymer (1) based on Cu(ii) paddlewheel units connected by 4,4'-DTBA, to form cyclic loop chains with intramolecular voids that exhibit reversible structural transformations upon subsequent solvent exchange in methanol to afford a new, crystalline, permanently-porous structure (1'). However, when the same reaction was run with pyridine, it formed a porous 2D coordination polymer (2). We have attributed the difference in dimensionality seen in the two products to the coordination of pyridine on the axial site of the Cu(ii) paddle-wheel, which forces flexible 4,4'-DTBA to adopt a different conformation. Reactions in the presence of 4,4'-bipyridine (4,4'-bpy) afforded two new, flexible, 2D coordination polymers (3 & 4). Lower concentrations of 4,4'-bpy afforded a structure (3) built from 1D chains analogous to those in 1 and connected through 4,4'-bpy linkers coordinated to the axial positions. Interestingly, 3 showed reversible structural transformations triggered by either solvent exchange or thermal treatment, each of which yielded a new crystalline and permanently porous phase (3'). Finally, use of higher concentrations of 4,4'-bpy led to a coordination polymer (4) based on a distorted CuO3N2 trigonal bipyramid, rather than on the Cu(ii) paddlewheel. The connection of these motifs by 4,4'-DTBA resulted in a zig-zag 1D chain connected through 4,4'-bpy ligands to form a porous 2D network. Interestingly, 4 also underwent reversible thermal transformation to yield a microporous coordination polymer (4').

9.
Acc Chem Res ; 53(6): 1206-1217, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32496790

ABSTRACT

ConspectusMetal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are among the most attractive porous materials today. They exhibit outstanding porosity for countless applications such as gas storage, CO2 capture, gas separation, sensing, drug delivery, and catalysis. Moreover, researchers have recently begun to combine MOFs or COFs with other functional materials to obtain composites that boast the respective strengths, and mitigate the respective weaknesses, of each component, enabling enhanced performance in many of the aforementioned applications. Accordingly, development of methods for fabrication of MOFs, COFs, and related composites is important for facilitating adoption of these materials in industry. One promising synthetic technique is spray-drying, which is already well-integrated in manufacturing processes for diverse sectors. It enables rapid, continuous and scalable production of dry microspherical powders in a single step, leading to lower fabrication costs and shorter production times compared to traditional methods.In this Account, we outline our ongoing work on spray-drying synthesis of crystalline porous MOFs, COFs, and related composites. Versatile and tunable, spray-drying can be adapted to perform reactions involving coordination and covalent chemistry for the synthesis of micrometer spherical beads/superstructures of MOFs and COFs. Likewise, MOF- and COF-based composites can be synthesized using similar conditions as those for pure MOFs or COFs, through the simple introduction of additional functional materials into the feed precursor solution or colloid. Interestingly, spray-drying can also be done in water, thus providing the basis for its use as a scalable green method for industrial fabrication of these materials. To date, spray-drying has already been scaled up for pilot production (kilogram scale) of MOFs.

10.
ACS Appl Mater Interfaces ; 12(9): 10554-10562, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32026677

ABSTRACT

Pollution of water with heavy metals is a global environmental problem whose impact is especially severe in developing countries. Among water-purification methods, adsorption of heavy metals has proven to be simple, versatile, and cost-effective. However, there is still a need to develop adsorbents with a capacity to remove multiple metal pollutants from the same water sample. Herein, we report the complementary adsorption capacities of metal-organic frameworks (here, UiO-66 and UiO-66-(SH)2) and inorganic nanoparticles (iNPs; here, cerium-oxide NPs) into composite materials. These adsorbents, which are spherical microbeads generated in one step by continuous-flow spray-drying, efficiently and simultaneously remove multiple heavy metals from water, including As(III and V), Cd(II), Cr(III and VI), Cu(II), Pb(II), and Hg(II). We further show that these microbeads can be used as a packing material in a prototype of a continuous-flow water treatment system, in which they retain their metal-removal capacities upon regeneration with a gentle acidic treatment. As proof-of-concept, we evaluated these adsorbents for purification of laboratory water samples prepared to independently recapitulate each of two strongly polluted rivers: the Bone (Indonesia) and Buringanga (Bangladesh) rivers. In both cases, our microbeads reduced the levels of all the metal contaminants to below the corresponding permissible limits established by the World Health Organization (WHO). Moreover, we demonstrated the capacity of these microbeads to lower levels of Cr(VI) in a water sample collected from the Sarno River (Italy). Finally, to create adsorbents that could be magnetically recovered following their use in water purification, we extended our spray-drying technique to simultaneously incorporate two types of iNPs (CeO2 and Fe3O4) into UiO-66-(SH)2, obtaining CeO2/Fe3O4@UiO-66-(SH)2 microbeads that adsorb heavy metals and are magnetically responsive.

11.
Chem Sci ; 12(1): 18-33, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-34163581

ABSTRACT

In nature and synthetic materials, asymmetry is a useful tool to create complex and functional systems constructed from a limited number of building blocks. Reticular chemistry has allowed the synthesis of a wide range of discrete and extended structures, from which modularity permits the controlled assembly of their constituents to generate asymmetric configurations of pores or architectures. In this perspective, we present the different strategies to impart directional asymmetry over nano/meso/macroscopic length scales in porous materials and the resulting novel properties and applications.

12.
Chem Soc Rev ; 48(23): 5534-5546, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31664283

ABSTRACT

The production of metal-organic frameworks (MOFs) in the form of colloids has brought a paradigm shift in the design of new functional porous materials. Along with their intrinsic interest as porous solids, and contrary to their bulk powder counterparts, colloidal MOF particles can additionally be dispersed, shaped, functionalized, transformed and assembled in a controlled manner, conferring them further properties and applications. In this regard, zeolitic imidazolate framework-8 (ZIF-8) has become a pioneering MOF constituent of colloidal science. Today, the understanding of the role of synthetic parameters, learned after one decade of research, enables the production of monodisperse colloidal ZIF-8 particles with tunable dimensions and morphologies, offering the opportunity to develop new functional materials and composites with novel and promising functionalities. This tutorial review provides a useful guide to prepare ZIF-8 in its colloidal form, covering the published studies on the synthesis of homogeneous ZIF-8 particles with controlled size and shape. In addition, we present the most relevant advances in the development of colloidal ZIF-8 hybrid single-particles, reflecting the great potential and rapid development of this interdisciplinary research field. Finally, we highlight how formulation of ZIF-8 as colloids has led to the emergence of novel physicochemical phenomena that are useful for practical applications. This review aims at promoting the development of MOFs as colloids, taking ZIF-8 as a pioneering and successful case that clearly shows the benefits of bridging MOF chemistry and colloidal science.

13.
Adv Mater ; 31(21): e1808235, 2019 May.
Article in English | MEDLINE | ID: mdl-30957295

ABSTRACT

The integration of swellable metal-organic frameworks (MOFs) into polymeric composite films is a straightforward strategy to develop soft materials that undergo reversible shape transformations derived from the intrinsic flexibility of MOF crystals. However, a crucial step toward their practical application relies on the ability to attain specific and programmable actuation, which enables the design of self-shaping objects on demand. Herein, a chemical etching method is demonstrated for the fabrication of patterned composite films showing tunable self-folding response, predictable and reversible 2D-to-3D shape transformations triggered by water adsorption/desorption. These films are fabricated by selective removal of swellable MOF crystals allowing control over their spatial distribution within the polymeric film. Upon exposure to moisture, various programmable 3D architectures, which include a mechanical gripper, a lift, and a unidirectional walking device, are generated. Remarkably, these 2D-to-3D shape transformations can be reversed by light-induced desorption. The reported strategy offers a platform for fabricating flexible MOF-based autonomous soft mechanical devices with functionalities for micromanipulation, automation, and robotics.

14.
Inorg Chem ; 58(5): 3290-3301, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30753067

ABSTRACT

Direct reactions under ambient conditions between CuX (X = Br, I) and thiobenzamide (TBA) were carried out at different ratios, giving rise to the formation of a series of one-dimensional (1D) coordination polymers, (CPs) [CuI(TBA)] n (1), [Cu3I3(TBA)2] n (4), and [CuBr(TBA)] n (5), as well as two molecular complexes, [CuI(TBA)3] (2) and [Cu2I2(TBA)4]·2MeCN (3). Recrystallization of 1 and 5 yielded a series of isostructural 1D CP solvated species, [CuI(TBA)·S] n] n (1·S; S = tetrahydrofuran, acetone, methanol) and [CuBr(TBA)·S] n (5·S; S = tetrahydrofuran, acetone), respectively. Similar reactions between CuI and 1,4-dithiobenzamide (DTBA) allowed the isolation of a series of two-dimensional (2D) CPs [CuI(DTBA)·S] n (6·S; S = N, N-dimethylformamide, acetonitrile, methanol). Interestingly, 1·S and 5·S showed variable luminescence and electrical semiconductivity depending on the different solvents located in their structures. Thus, 1 and 5 could display potential application for sensing volatile organic vapors by virtue of the significant changes in their emission upon solvent exposure, even by the naked eye. Theoretical calculations have been used to rationalize these electronic properties.

15.
Angew Chem Int Ed Engl ; 57(47): 15420-15424, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30226289

ABSTRACT

Herein, we exploit the well-known swelling behaviour of metal-organic frameworks (MOFs) to create a self-folding polymer film. Namely, we show that incorporating crystals of the flexible MOF MIL-88A into a polyvinylidene difluoride (PVDF) matrix affords a polymer composite film that undergoes reversible shape transformations upon exposure to polar solvents and vapours. Since the self-folding properties of this film correlate directly with the swelling properties of the MIL-88A crystals, it selectively bends to certain solvents and its degree of folding can be controlled by controlling the relative humidity. Moreover, it shows a shape-memory effect at relative humidity values from 60 % to 90 %. As proof of concept, we demonstrate that these composite films can lift cargo and can be used to assemble 3D structures from 2D patterns. Our strategy is a straightforward method for designing autonomous soft materials with folding properties that can be tuned by judicious choice of the constituent flexible MOF.

16.
ACS Nano ; 12(10): 10171-10177, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30207692

ABSTRACT

The future of 2D flexible electronics relies on the preparation of conducting ultrathin films of materials with mechanical robustness and flexibility in a simple but controlled manner. In this respect, metal-organic compounds present advantages over inorganic laminar crystals owing to their structural, chemical, and functional diversity. While most metal-organic compounds are usually prepared in bulk, recent work has shown that some of them are processable down to low dimensional forms. Here we report the one-pot preparation, carried out at the water-air interface, of ultrathin (down to 4 nm) films of the metal-organic compound [Cu2I2(TAA)] n (TAA= thioacetamide). The films are shown to be homogeneous over mm2 areas, smooth, highly transparent, mechanically robust, and good electrical conductors with memristive behavior at low frequencies. This combination of properties, as well as the industrial availability of the two building blocks required for the preparation, demonstrates their wide range potential in future flexible and transparent electronics.

17.
Chemistry ; 22(50): 18027-18035, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27809369

ABSTRACT

Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu3 X(HT)2 ]n (X=Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room- and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu-Cu bond lengths at low temperatures. 1 and 2 are isostructural, consisting of layers in which the halogen ligands act as µ3 -bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as µ4 -mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, whereas upon cooling at 77 K 1 and 2 show stronger yellow emission, and 3 displays stronger green emission. DFT calculations have been used to rationalize these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...