Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioinform Adv ; 3(1): vbad129, 2023.
Article in English | MEDLINE | ID: mdl-37786533

ABSTRACT

Summary: Protein kinases are a family of signaling proteins, crucial for maintaining cellular homeostasis. When dysregulated, kinases drive the pathogenesis of several diseases, and are thus one of the largest target categories for drug discovery. Kinase activity is tightly controlled by switching through several active and inactive conformations in their catalytic domain. Kinase inhibitors have been designed to engage kinases in specific conformational states, where each conformation presents a unique physico-chemical environment for therapeutic intervention. Thus, modeling kinases across conformations can enable the design of novel and optimally selective kinase drugs. Due to the recent success of AlphaFold2 in accurately predicting the 3D structure of proteins based on sequence, we investigated the conformational landscape of protein kinases as modeled by AlphaFold2. We observed that AlphaFold2 is able to model several kinase conformations across the kinome, however, certain conformations are only observed in specific kinase families. Furthermore, we show that the per residue predicted local distance difference test can capture information describing structural flexibility of kinases. Finally, we evaluated the docking performance of AlphaFold2 kinase structures for enriching known ligands. Taken together, we see an opportunity to leverage AlphaFold2 models for structure-based drug discovery against kinases across several pharmacologically relevant conformational states. Availability and implementation: All code used in the analysis is freely available at https://github.com/Harmonic-Discovery/AF2-kinase-conformational-landscape.

2.
ACS Phys Chem Au ; 2(4): 316-330, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35936506

ABSTRACT

With the increasing popularity of machine learning (ML) applications, the demand for explainable artificial intelligence techniques to explain ML models developed for computational chemistry has also emerged. In this study, we present the development of the Boltzmann-weighted cumulative integrated gradients (BCIG) approach for effective explanation of mechanistic insights into ML models trained on high-level quantum mechanical and molecular mechanical (QM/MM) minimum energy pathways. Using the acylation reactions of the Toho-1 ß-lactamase and two antibiotics (ampicillin and cefalexin) as the model systems, we show that the BCIG approach could quantitatively attribute the energetic contribution in one system and the relative reactivity of individual steps across different systems to specific chemical processes such as the bond making/breaking and proton transfers. The proposed BCIG contribution attribution method quantifies chemistry-interpretable insights in terms of contributions from each elementary chemical process, which is in agreement with the validating QM/MM calculations and our intuitive mechanistic understandings of the model reactions.

3.
Org Biomol Chem ; 20(17): 3605-3618, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35420112

ABSTRACT

The Angiotensin Converting Enzyme 2 (ACE2) assists the regulation of blood pressure and is the main target of the coronaviruses responsible for SARS and COVID19. The catalytic function of ACE2 relies on the opening and closing motion of its peptidase domain (PD). In this study, we investigated the possibility of allosterically controlling the ACE2 PD functional dynamics. After confirming that ACE2 PD binding site opening-closing motion is dominant in characterizing its conformational landscape, we observed that few mutations in the viral receptor binding domain fragments were able to impart different effects on the binding site opening of ACE2 PD. This showed that binding to the solvent exposed area of ACE2 PD can effectively alter the conformational profile of the protein, and thus likely its catalytic function. Using a targeted machine learning model and relative entropy-based statistical analysis, we proposed the mechanism for the allosteric perturbation that regulates the ACE2 PD binding site dynamics at atomistic level. The key residues and the source of the allosteric regulation of ACE PD dynamics are also presented.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Binding Sites , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Comput Struct Biotechnol J ; 20: 50-64, 2022.
Article in English | MEDLINE | ID: mdl-34976311

ABSTRACT

The Light-Oxygen-Voltage 2 (LOV2) domain of Avena Sativa phototropin 1 (AsLOV2) protein is one of the most studied domains in the field of designing photoswitches. This is due to the several unique features in the AsLOV2, such as the monomeric structure of the protein in both light and dark states and the relatively short transition time between the two states. Despite that, not many studies focus on the effect of the secondary structures on the drastic conformational change between the light and dark states. In this study, we focus on the role of A' α helix as a key player in the transition between both states using various computational tools as: 1.5 µ s molecular dynamics simulations for each configuration, Markov state model, different machine learning techniques, and community analysis. The impact of the A' α helix was studied on the atomistic level by introducing two groups of mutations, helicity enhancing mutations (T406A and T407A) and helicity disrupting mutations (L408D and R410P), as well as on the overall secondary structure by using the community analysis. Maintaining the N-terminal hydrogen bond network was found to be essential for the transition between the two states. Via in-depth hydrogen bonding and contact analysis we were able to identify key residues (Thr407 and Arg410) involved in the functional conformational switch and their impact on the overall protein dynamics. Moreover, the community analysis highlighted the significant role of the ß sheets in the overall protein allosteric process.

5.
Front Mol Biosci ; 8: 781635, 2021.
Article in English | MEDLINE | ID: mdl-34869602

ABSTRACT

Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.

6.
Org Biomol Chem ; 19(42): 9182-9189, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34647114

ABSTRACT

Efficient mechanism-based design of antibiotics that are not susceptible to ß-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various ß-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) ß-lactamase. We show that the catalytic pathways for ß-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow provides quantitative insights to facilitate the optimization of future ß-lactam antibiotics.


Subject(s)
beta-Lactamases
7.
PLoS Comput Biol ; 17(7): e1009168, 2021 07.
Article in English | MEDLINE | ID: mdl-34310591

ABSTRACT

In Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and allosteric variants of ZTL in the functional dark and light states, together with Markov state and supervised machine learning classification models. This approach has unveiled key factors of the ZTL allosteric mechanisms, and identified specific interactions and residues implicated in functional allosteric changes. The final results reveal atomic level insights into allosteric mechanisms of ZTL function that operate via a non-trivial combination of population-shift and dynamics-driven allosteric pathways.


Subject(s)
Arabidopsis Proteins , Circadian Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins , Allosteric Regulation , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/radiation effects , Circadian Rhythm Signaling Peptides and Proteins/chemistry , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm Signaling Peptides and Proteins/radiation effects , Computational Biology , Machine Learning , Molecular Dynamics Simulation
8.
J Phys Chem B ; 125(19): 5022-5034, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33973773

ABSTRACT

Proteins are the molecular machines of life. The multitude of possible conformations that proteins can adopt determines their free-energy landscapes. However, the inherently high dimensionality of a protein free-energy landscape poses a challenge to deciphering how proteins perform their functions. For this reason, dimensionality reduction is an active field of research for molecular biologists. The uniform manifold approximation and projection (UMAP) is a dimensionality reduction method based on a fuzzy topological analysis of data. In the present study, the performance of UMAP is compared with that of other popular dimensionality reduction methods such as t-distributed stochastic neighbor embedding (t-SNE), principal component analysis (PCA), and time-structure independent components analysis (tICA) in the context of analyzing molecular dynamics simulations of the circadian clock protein VIVID. A good dimensionality reduction method should accurately represent the data structure on the projected components. The comparison of the raw high-dimensional data with the projections obtained using different dimensionality reduction methods based on various metrics showed that UMAP has superior performance when compared with linear reduction methods (PCA and tICA) and has competitive performance and scalable computational cost.


Subject(s)
Benchmarking , Molecular Dynamics Simulation , Principal Component Analysis
9.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573266

ABSTRACT

Computational prediction of Protein-Ligand Interaction (PLI) is an important step in the modern drug discovery pipeline as it mitigates the cost, time, and resources required to screen novel therapeutics. Deep Neural Networks (DNN) have recently shown excellent performance in PLI prediction. However, the performance is highly dependent on protein and ligand features utilized for the DNN model. Moreover, in current models, the deciphering of how protein features determine the underlying principles that govern PLI is not trivial. In this work, we developed a DNN framework named SSnet that utilizes secondary structure information of proteins extracted as the curvature and torsion of the protein backbone to predict PLI. We demonstrate the performance of SSnet by comparing against a variety of currently popular machine and non-Machine Learning (ML) models using various metrics. We visualize the intermediate layers of SSnet to show a potential latent space for proteins, in particular to extract structural elements in a protein that the model finds influential for ligand binding, which is one of the key features of SSnet. We observed in our study that SSnet learns information about locations in a protein where a ligand can bind, including binding sites, allosteric sites and cryptic sites, regardless of the conformation used. We further observed that SSnet is not biased to any specific molecular interaction and extracts the protein fold information critical for PLI prediction. Our work forms an important gateway to the general exploration of secondary structure-based Deep Learning (DL), which is not just confined to protein-ligand interactions, and as such will have a large impact on protein research, while being readily accessible for de novo drug designers as a standalone package.


Subject(s)
Deep Learning , Drug Discovery/methods , Ligands , Protein Binding , Animals , Binding Sites , Caenorhabditis elegans , Datasets as Topic , Humans , Protein Domains , Protein Structure, Secondary
10.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557253

ABSTRACT

Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads. Herein, we introduce an application of a deep neural network based drug screening method, validating it using a docking algorithm on approved drugs for drug repurposing efforts, and extending the screen to a large library of 750,000 compounds for de novo drug discovery effort. The results of large library screens are incorporated into an open-access web interface to allow researchers from diverse fields to target molecules of interest. Our combined approach allows for both the identification of existing drugs that may be able to be repurposed and de novo design of ACE2-regulatory compounds. Through these efforts we demonstrate the utility of a new machine learning algorithm for drug discovery, SSnet, that can function as a tool to triage large molecular libraries to identify classes of molecules with possible efficacy.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Neural Networks, Computer , SARS-CoV-2/drug effects , Algorithms , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Databases, Pharmaceutical , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , Humans , Machine Learning , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
11.
J Phys Chem B ; 124(41): 8960-8972, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32970438

ABSTRACT

The conformational-driven allosteric protein diatom Phaeodactylum tricornutum aureochrome 1a (PtAu1a) differs from other light-oxygen-voltage (LOV) proteins for its uncommon structural topology. The mechanism of signaling transduction in the PtAu1a LOV domain (AuLOV) including flanking helices remains unclear because of this dissimilarity, which hinders the study of PtAu1a as an optogenetic tool. To clarify this mechanism, we employed a combination of tree-based machine learning models, Markov state models, machine-learning-based community analysis, and transition path theory to quantitatively analyze the allosteric process. Our results are in good agreement with the reported experimental findings and reveal a previously overlooked Cα helix and protein linkers as important in promoting the protein conformational changes. This integrated approach can be considered as a general workflow and applied on other allosteric proteins to provide detailed information about their allosteric mechanisms.


Subject(s)
Diatoms , Light , Oxygen , Proteins , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...