Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 238: 113878, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565007

ABSTRACT

Nitrogen-doped carbon dots (NCD) were synthesized using a simple and fast hydrothermal route, employing citric acid and urea as precursors. The resulting NCDs were non-covalently functionalized (conjugated) with aromatic amino acids, namely phenylalanine (Phe) and tryptophan (Trp). Atomic force microscopy revealed that the NCDs exhibit a disk-like morphology with an average diameter of approximately 60 nm and an average height of about 0.5 nm. Following conjugation, the particle height increased to around 3 nm. UV-vis spectroscopy analysis indicated successful conjugation of the amino acids to the NCD nanostructures. Additionally, DFT numerical calculations based on three differently N-doped clusters were performed to elucidate the nature of the non-covalent interactions between NCDs and the corresponding amino acids. Photoluminescent spectra demonstrated a stable and strong fluorescence signal for both hybrids in the UV region. The most significant changes were observed in the case of Trp-conjugation. In contrast to phenylalanine, the non-covalent bonding of tryptophan to NCDs strongly influenced the visible emission (around 500 nm) originating from surface states of the dots.


Subject(s)
Amino Acids, Aromatic , Carbon , Nanostructures , Nitrogen , Carbon/chemistry , Nitrogen/chemistry , Amino Acids, Aromatic/chemistry , Nanostructures/chemistry , Quantum Dots/chemistry , Surface Properties , Phenylalanine/chemistry , Particle Size , Tryptophan/chemistry , Microscopy, Atomic Force , Optical Phenomena , Density Functional Theory
2.
Methods Mol Biol ; 991: 315-23, 2013.
Article in English | MEDLINE | ID: mdl-23546681

ABSTRACT

Carbon nanotubes are unique one-dimensional macromolecules with promising application in biology and medicine. Since their toxicity is still under debate, here we describe an investigation of genotoxic properties of purified single-walled carbon nanotubes (SWCNT), multiwall carbon nanotubes (MWCNT), and amide-functionalized purified SWCNT. We used two different cell systems: cultured human lymphocytes where we employed cytokinesis-block micronucleus test and human fibroblasts where we investigate the induction of DNA double-strand breaks (DSBs) employing H2AX phosphorylation assay.


Subject(s)
Mutagenicity Tests , Nanotubes, Carbon/toxicity , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...