Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 12(7): 908-914, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37358522

ABSTRACT

The ability to rationally design biomaterials to form desired supramolecular constructs presents an ever-growing research field, with many burgeoning works within recent years providing exciting results; however, there exists a broad expanse of promising avenues of research yet to be investigated. As such we have set out to make use of the polyproline helix as a rigid, tunable, and chiral ligand for the rational design and synthesis of supramolecular constructs. In this investigation, we show how an oligoproline tetramer can be specifically designed and functionalized, allowing predictable tuning of supramolecular interactions, to engineer the formation of supramolecular peptide frameworks with varying properties and, consequently, laying the groundwork for further studies utilizing the polyproline helix, with the ability to design desired supramolecular structures containing these peptide building blocks, having tunable structural features and functionalities.


Subject(s)
Peptides , Protein Engineering
2.
Chemistry ; 28(66): e202202368, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36040298

ABSTRACT

The ability to use bio-inspired building blocks in the assembly of novel supramolecular frameworks is at the forefront of an exciting research field. Herein, we present the first polyproline helix to self-assemble into a reversibly porous, crystalline, supramolecular peptide framework (SPF). This framework is assembled from a short oligoproline, adopting the polyproline II conformation, driven by hydrogen-bonding and dispersion interactions. Thermal activation, guest-induced dynamic porosity and enantioselective guest inclusion have been demonstrated for this novel system. The principles of the self-assembly associated with this SPF will be used as a blueprint allowing for the further development of helical peptide linkers in the rational design of SPFs and metal-peptide frameworks.


Subject(s)
Peptides , Porosity , Hydrogen Bonding , Molecular Conformation
3.
Chem Sci ; 13(11): 3176-3186, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414871

ABSTRACT

Herein we present co-crystallisation as a strategy for materials discovery in the field of switchable spin crossover (SCO) systems. Using [Fe(3-bpp)2]·2A (where 3-bpp = 2,6-bis(pyrazol-3-yl)pyridine, A = BF4 -/PF6 -) as a starting point, a total of 11 new cocrystals have been synthesised with five different dipyridyl coformers. Eight of these systems show spin crossover behaviour, and all show dramatically different switching properties from the parent complex. The cocrystals have been studied by variable temperature single-crystal X-ray diffraction and SQUID magnetometry to develop structure-property relationships. The supramolecular architecture of the cocrystals depends on the properties of the coformer. With linear, rigid coformer molecules leading to 1D supramolecular hydrogen-bonded chains, while flexible coformers form 2D sheets and bent coformers yield 3D network structures. The SCO behaviour of the cocrystals can be modified through changing the coformer and thus co-crystallisation presents a rapid, facile and highly modular tool for the discovery of new switchable materials. The wider applicability of this strategy to the design of hybrid multifunctional materials is also discussed.

4.
Dalton Trans ; 47(35): 12079-12084, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30019732

ABSTRACT

We report the design and synthesis of a Cu(ii) metallocycle (1) and use the possibility to expand the Cu(ii) coordination sphere to self-assemble mechanically interlocked species via interpenetration. Metallocycle 1 can be used as a platform to reversibly assemble a 1D + 1D → 1D coordination-driven polyrotaxane (3), where 1 acts as the hosting ring as well as the stopper, and 4,4'-bipyridine is the guest-axle. A coordinating solvent can substitute the 4,4'-bipyridine axle to disassemble the polyrotaxane (3 → 2) that is easily restored by further adding 4,4'-bipyridine (2 → 3). Other polyrotaxanes can be isolated by reacting 1 with pyridine (4) and phenylpyridine (5). Interconversion among the presented species is demonstrated and ensured by the open position of each copper center in platform 1.

SELECTION OF CITATIONS
SEARCH DETAIL
...