Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 31(6): 2980-2992, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33506269

ABSTRACT

Long-term storage of information into memory is supposed to rely on long-term synaptic plasticity processes. The detection of such synaptic changes after training in long-term/reference memory (RM) tasks has yet been scarce, variable and only studied on a short time scale. Short-term or working memory (WM) is largely known to depend on persistent neuronal activity or short-term plasticity. However, processing information into WM could also involve long-term synaptic changes that could be responsible for the erasure/forgetting of items previously stored in WM and acting as proactive interference. In order to study long-term synaptic changes associated with RM or WM, we trained chronically implanted rats in 3 different radial maze tasks: a classical RM task and 2 WM tasks involving different levels of proactive interference. Synaptic responses in the dentate gyrus were recorded during 2 × 24 h in freely moving rats after training. We found that consolidation of long-term information leads first to a delayed synaptic potentiation, occurring 9 h after RM training that is replaced by a synaptic depression once the RM rule is fully acquired. In contrast, optimal information processing into WM triggers a synaptic depression immediately after training and lasting 3 h that could act as a mechanism for interference erasure/forgetting.


Subject(s)
Dentate Gyrus/physiology , Excitatory Postsynaptic Potentials/physiology , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Psychomotor Performance/physiology , Synapses/physiology , Animals , Electrodes, Implanted , Electroencephalography/methods , Electromyography/methods , Male , Maze Learning/physiology , Rats
2.
Front Mol Neurosci ; 13: 140, 2020.
Article in English | MEDLINE | ID: mdl-32848601

ABSTRACT

Loss of vestibular function is known to cause spatial memory deficits and hippocampal dysfunction, in terms of impaired place cell firing and abnormal theta rhythm. Based on these results, it has been of interest to determine whether vestibular loss also affects the development and maintenance of long-term potentiation (LTP) in the hippocampus. This article summarizes and critically reviews the studies of hippocampal LTP following a vestibular loss and its relationship to NMDA receptor expression, that have been published to date. Although the available in vitro studies indicate that unilateral vestibular loss (UVL) results in reduced hippocampal field potentials in CA1 and the dentate gyrus (DG), the in vivo studies involving bilateral vestibular loss (BVL) do not. This may be due to the differences between UVL and BVL or it could be a result of in vitro/in vivo differences. One in vitro study reported a decrease in LTP in hippocampal slices following UVL; however, the two available in vivo studies have reported different results: either no effect or an increase in EPSP/Population Spike (ES) potentiation. This discrepancy may be due to the different high-frequency stimulation (HFS) paradigms used to induce LTP. The increased ES potentiation following BVL may be related to an increase in synaptic NMDA receptors, possibly increasing the flow of vestibular input coming into CA1, with a loss of selectivity. This might cause increased excitability and synaptic noise, which might lead to a degradation of spatial learning and memory.

3.
Front Behav Neurosci ; 9: 292, 2015.
Article in English | MEDLINE | ID: mdl-26578920

ABSTRACT

Since the discovery of place cells, the hippocampus is thought to be the neural substrate of a cognitive map. The later discovery of head direction cells, grid cells and border cells, as well as of cells with more complex spatial signals, has led to the idea that there is a brain system devoted to providing the animal with the information required to achieve efficient navigation. Current questioning is focused on how these signals are integrated in the brain. In this review, we focus on the issue of how self-localization is performed in the hippocampal place cell map. To do so, we first shortly review the sensory information used by place cells and then explain how this sensory information can lead to two coding modes, respectively based on external landmarks (allothetic information) and self-motion cues (idiothetic information). We hypothesize that these two modes can be used concomitantly with the rat shifting from one mode to the other during its spatial displacements. We then speculate that sequential reactivation of place cells could participate in the resetting of self-localization under specific circumstances and in learning a new environment. Finally, we provide some predictions aimed at testing specific aspects of the proposed ideas.

4.
Hippocampus ; 24(8): 979-89, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24753009

ABSTRACT

Neural cell adhesion molecule (NCAM) is associated with polysialic acid (PSA), and its function is highly dependent on the extent of polysialylation through the activity of two polysialyltransferases, sialyltransferase-X (STX) and polysialyltransferase (PST). PSA-NCAM plays an important role in synaptic plasticity in the hippocampus. The involvement of STX and PST during mnesic processes was assessed in the adult rat hippocampus. We investigated whether different levels in learning and memory using an olfactory associative task influenced STX and PST gene expression in the hippocampus using semiquantitative transcription-polymerase chain reaction. Then, NCAM polysialylation and cell proliferation were quantified in the dentate gyrus of a "Learning and Memory" group using immunohistochemistry. We found that only the expression level of PST mRNA increased with learning performance and returned to an initial level when learned associations were consolidated in long-term memory, while STX mRNA levels remained unchanged. This phenomenon was accompanied by an increase in PSA on NCAM but not by cell proliferation in the dentate gyrus. Our results suggest a different involvement for STX and PST in neural plasticity: while STX is probably involved in the proliferation of neural progenitor cells, PST could play a key role in synaptic plasticity of mature neural networks. The expression of the STX and PST genes could, therefore, be useful markers of neurobiological plasticity in the brain, allowing to follow chronological events in limbic and cortical structures related first to learning and memory processes (for PST) and, second, to adult neurogenesis processes (for STX).


Subject(s)
Association Learning/physiology , Hippocampus/enzymology , Memory/physiology , Olfactory Perception/physiology , Sialyltransferases/metabolism , Animals , Cell Proliferation/physiology , Gene Expression , Male , Neural Cell Adhesion Molecules/metabolism , Neurogenesis/physiology , Neuronal Plasticity/physiology , Neuropsychological Tests , RNA, Messenger/metabolism , Rats, Sprague-Dawley
5.
Learn Mem ; 19(7): 282-93, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22700470

ABSTRACT

Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.c.v.) infusion increased and stabilized the EPSP-spike (E-S) component of LTP in the dentate gyrus (DG), with no effect on basal transmission or short-term plasticity. This increase in E-S potentiation duration could result from the combination of an increase in excitability of DG granular cells with a reduction of GABAergic inhibition, leading to a strong reduction of input specificity. Radioactive in situ hybridization (ISH) was used to evaluate the amounts of Kv4.2 and Kv4.3 mRNA in brain structures at different stages of a spatial learning task in naive, pseudoconditioned, and conditioned rats. Significant differences in Kv4.2 and Kv4.3 mRNA levels were observed between conditioned and pseudoconditioned rats. Kv4.2 and Kv4.3 mRNA levels were transiently up-regulated in the striatum, nucleus accumbens, retrosplenial, and cingulate cortices during early stages of learning, suggesting an involvement in the switch from egocentric to allocentric strategies. Spatial learning performance was positively correlated with the levels of Kv4.2 and Kv4.3 mRNAs in several of these brain structures. Altogether our findings suggest that Kv4 channels could increase the signal-to-noise ratio during information acquisition, thereby allowing a better encoding of the memory trace.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Memory/physiology , Shal Potassium Channels/metabolism , Spatial Behavior/physiology , Animals , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , Functional Laterality , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Hippocampus/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Oligodeoxyribonucleotides, Antisense/pharmacology , Potassium Channel Blockers/pharmacology , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Scorpion Venoms/pharmacology , Shal Potassium Channels/chemistry , Shal Potassium Channels/genetics , Spatial Behavior/drug effects , Statistics, Nonparametric , Time Factors
6.
Rev Neurosci ; 15(1): 1-17, 2004.
Article in English | MEDLINE | ID: mdl-15046196

ABSTRACT

This review summarizes research that correlates behavioral performance and cellular physiology leading to modifications in the neuronal networks supporting long-term memory in the mammalian brain. Rats were trained in an olfactory associative discrimination task in which natural odors were replaced by mimetic olfactory stimulations. Olfactory learning induced synaptic modifications that affected behavioral performance along the central olfactory pathways. Starting with an early increase in monosynaptic efficacy in the dentate gyrus on the first session, a polysynaptic modification appeared later on in this hippocampal network, when rats began to make associations between cues and rewards. Therefore, only when rats made consistent associations did a long-term potentiation in the synapses of the piriform cortex pyramidal neurons appear. These modifications may correspond to the long-term storage of the meaning of the cue-reward association in a specific cortical area. Based on these cumulative results, a hypothesis is proposed to account for how, when, and where synaptic modifications in neural networks are required to constitute long-term memory.


Subject(s)
Discrimination, Psychological/physiology , Memory/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Olfactory Pathways/physiology , Synapses/physiology , Animals , Cats , Neural Networks, Computer , Olfactory Pathways/anatomy & histology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...