Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 32(20): 1773-1780, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30030922

ABSTRACT

RATIONALE: Stable isotope analysis is widely used to reconstruct diet, delineate trophic interactions, and determine energy pathways. Such ecological inferences are based on the idea that animals are, isotopically, what they eat but with a predictable difference between the isotopic ratio of a consumer and that of its diet, coined as the discrimination factor. Providing correct estimates of diet-consumer isotopic discrimination in controlled conditions is key for a robust application of the stable isotopes technique in the wild. METHODS: Using a Finnigan Mat Delta Plus isotope-ratio mass spectrometer, we investigated isotopic discrimination of carbon and nitrogen isotope ratios (δ13 C and δ15 N values) in guard hairs of four Arctic predators; the wolf (n = 7), the wolverine (n = 2), the grizzly bear (n = 2), and the polar bear (n = 3). During a 3-month trial, carnivores were fed a mixed diet. The δ13 C and δ15 N values, and the mass (g) of diet items, were monitored weekly for each individual to determine their Total Diet Average ratios. RESULTS: Diet-hair isotopic discrimination (Δx) varied according to species, ranging [1.88 ± 0.69‰: 3.2 ± 0.69‰] for δ13 C values, and [1.58 ± 0.17‰: 3.81 ± 0.22‰] for δ15 N values. Adult wolves Δ13 C average (2.03 ± 0.7‰) was lower than that of young wolves (2.60 ± 0.8‰) and any other species (combined average of 2.59 ± 0.28‰), except for the wolverine (2.12 ± 0.23‰). Wolves Δ15 N averages (juveniles: 3.51 ± 0.34‰, adults: 3.68 ± 0.28‰) were higher than those of any other species (combined average: 2.50 ± 0.58‰). CONCLUSIONS: The discrimination factors for δ13 C and δ15 N values calculated in this study could be used in ecological studies dealing with free-ranging animals, with implications for non-invasive research approaches. As in other controlled discrimination studies, we recommend caution in applying our discrimination factors when the population structure is heterogeneous.


Subject(s)
Carbon Isotopes/analysis , Carnivory/physiology , Endangered Species , Hair/chemistry , Nitrogen Isotopes/analysis , Animals , Arctic Regions , Female , Food Analysis/methods , Mass Spectrometry/methods , Ursidae/physiology , Wolves/physiology
2.
PLoS One ; 8(3): e59311, 2013.
Article in English | MEDLINE | ID: mdl-23544059

ABSTRACT

Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994-2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R(2)adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R(2)adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising step in integrating stranding records to monitor the consequences of environmental changes in marine ecosystems over long time scales.


Subject(s)
Ecosystem , Mammals/physiology , Seawater , Animals , Biodiversity , Geography , Ice , Linear Models , Quebec , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...