Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Blood Cancer ; 46(4): 434-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16333815

ABSTRACT

BACKGROUND: Inosine 5'-monophosphate dehydrogenase (IMPDH; EC1.1.1.205) catalyzes the rate-limiting step in guanine nucleotide biosynthesis, and may play an important role in treatment of patients with antipurines. METHODS: We used an HPLC method to measure the IMPDH activity in peripheral blood and bone marrow mononuclear cells (MNC). IMPDH activities were determined in children who were diagnosed with and treated for acute lymphoblastic leukemia (ALL), and in a group of control children. RESULTS: The median IMPDH activity for control children was 350 pmol/10(6) pMNC/hr (range 97-896; n = 47). No gender or age differences were observed. IMPDH activity at diagnosis of ALL was correlated with the percentage of peripheral blood lymphoblasts (r = 0.474; P < 0.001; n = 71). The median IMPDH activity at diagnosis was 410 pmol/10(6) pMNC/hr (range 40-2009; n = 76), significantly higher than for controls (P = 0.012). IMPDH activity significantly decreased after induction treatment, and during treatment with methotrexate (MTX) infusions (median 174 pmol/10(6) pMNC/hr; range 52-516; n = 21). The activity remained low during maintenance treatment with 6-mercaptopurine (6MP) and MTX, at a significantly lower level than for controls (P < 0.004). One year after cessation of treatment IMPDH activity returned to normal values. CONCLUSION: The decrease of IMPDH activity at remission of ALL seems to be at least partly due to the eradication of lymphoblasts with the type 2 isoform of the enzyme.


Subject(s)
IMP Dehydrogenase/metabolism , Leukocytes, Mononuclear/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Adolescent , Adult , Child , Child, Preschool , Enzyme Activation , Female , Humans , IMP Dehydrogenase/chemistry , Infant , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
2.
Ann Clin Biochem ; 40(Pt 1): 70-4, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12542913

ABSTRACT

BACKGROUND: Methotrexate (MTX) followed by 6-mercaptopurine (6MP) is one of the best known combinations for the treatment of childhood acute lymphoblastic leukaemia. Tiazofurin (TF) and 6-thioguanine (TG) are also used as chemotherapy agents in the treatment of malignancies. We have examined the induction of apoptosis by combinations of these drugs to gain more insights into their efficacy in the treatment of malignancies. METHODS: The induction of apoptosis was examined in Molt-4, a human malignant acute lymphoblastic T-cell line. The cells were exposed to increasing drug concentrations at various exposure times. Annexin V/FITC and propidium iodide (PI) were used as markers for apoptosis and cell death. Annexin V/FITC positive and PI positive cells were detected by flow-cytometric analysis. RESULTS: Sequential 24-h exposure with MTX (0.005-0.02 micro mol) followed by 6MP (1-10 micro mol) and 24-h exposure with TF (5-20 micro mol) followed by TG (0.5-2 micro mol) showed a more than additive induction of apoptosis compared with single-drug exposure. Simultaneous administration of the drugs does not show an additive effect on apoptosis. CONCLUSIONS: The results of this study indicate that sequential administration of MTX before 6MP and of TF before TG may be essential for therapeutic success in the treatment of leukaemia.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis , Leukemia/therapy , Mercaptopurine/therapeutic use , Purines/metabolism , Annexin A5/pharmacology , Cell Survival , Child , Coloring Agents/pharmacology , Humans , Methotrexate/therapeutic use , Models, Biological , Ribavirin/analogs & derivatives , Ribavirin/therapeutic use , Thioguanine/therapeutic use , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...