Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 691: 466-475, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31323591

ABSTRACT

Multiple processes affect the fate of the radioactive isotope 129I in the environment. Primary categories of these processes include electron transfer reactions mediated by minerals and microbes, adsorption to sediments, interactions with organic matter, co-precipitation, and volatilization. A description of dominant biogeochemical processes is provided to describe the interrelationship of these processes and the associated iodine chemical species. The majority of the subsurface iodine fate and transport studies in the United States have been conducted at U.S. Department of Energy (DOE) sites where radioisotopes of iodine are present in the environment and stored waste. The DOE Hanford Site and Savannah River Site (SRS) are used to illustrate how the iodine species and dominant processes at a site are controlled by the prevailing site biogeochemical conditions. These sites differ in terms of climate (arid vs. sub-tropical), major geochemical parameters (e.g., pH ~7.5 vs. 4), and mineralogy (carbonate vs. Fe/Al oxide dominated). The iodine speciation and dominant processes at a site also have implications for selection and implementation of suitable remedy approaches for 129I.

2.
Vadose Zone J ; 12(4)2013 Nov 01.
Article in English | MEDLINE | ID: mdl-25383058

ABSTRACT

Contamination of vadose-zone systems by chlorinated solvents is widespread, and poses significant potential risk to human health through impacts on groundwater quality and vapor intrusion. Soil vapor extraction (SVE) is the presumptive remedy for such contamination, and has been used successfully for innumerable sites. However, SVE operations typically exhibit reduced mass-removal effectiveness at some point due to the impact of poorly accessible contaminant mass and associated mass-transfer limitations. Assessment of SVE performance and closure is currently based on characterizing contaminant mass discharge associated with the vadose-zone source, and its impact on groundwater or vapor intrusion. These issues are addressed in this overview, with a focus on summarizing recent advances in our understanding of the transport, characterization, and remediation of chlorinated solvents in the vadose zone. The evolution of contaminant distribution over time and the associated impacts on remediation efficiency will be discussed, as will the potential impact of persistent sources on groundwater quality and vapor intrusion. In addition, alternative methods for site characterization and remediation will be addressed.

3.
J Contam Hydrol ; 128(1-4): 71-82, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22192346

ABSTRACT

Soil vapor extraction (SVE) is typically effective for removal of volatile contaminants from higher-permeability portions of the vadose zone. However, contamination in lower-permeability zones can persist due to mass transfer processes that limit the removal effectiveness. After SVE has been operated for a period of time and the remaining contamination is primarily located in lower-permeability zones, the remedy performance needs to be evaluated to determine whether the SVE system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. Numerical modeling of vapor-phase contaminant transport was used to investigate the correlation between measured vapor-phase mass discharge, MF(r), from a persistent, vadose-zone contaminant source and the resulting groundwater contaminant concentrations. This relationship was shown to be linear, and was used to directly assess SVE remediation progress over time and to determine the level of remediation in the vadose zone necessary to protect groundwater. Although site properties and source characteristics must be specified to establish a unique relation between MF(r) and the groundwater contaminant concentration, this correlation provides insight into SVE performance and support for decisions to optimize or terminate the SVE operation or to transition to another type of treatment.


Subject(s)
Carbon Tetrachloride/chemistry , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Computer Simulation , Washington
4.
Environ Sci Technol ; 45(10): 4207-16, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21395250

ABSTRACT

Contamination in deep vadose zone environments is isolated from exposure so direct contact is not a factor in its risk to human health and the environment. Instead, movement of contamination to the groundwater creates the potential for exposure and risk to receptors. Limiting flux from contaminated vadose zone is key for protection of groundwater resources, thus the deep vadose zone is not necessarily considered a resource requiring restoration. Contaminant discharge to the groundwater must be maintained low enough by natural attenuation (e.g., adsorption processes or radioactive decay) or through remedial actions (e.g., contaminant mass reduction or mobility reduction) to meet the groundwater concentration goals. This paper reviews the major processes for deep vadose zone metal and radionuclide remediation that form the practical constraints on remedial actions. Remediation of metal and radionuclide contamination in the deep vadose zone is complicated by heterogeneous contaminant distribution and the saturation-dependent preferential flow in heterogeneous sediments. Thus, efforts to remove contaminants have generally been unsuccessful although partial removal may reduce downward flux. Contaminant mobility may be reduced through abiotic and biotic reactions or through physical encapsulation. Hydraulic controls may limit aqueous transport. Delivering amendments to the contaminated zone and verifying performance are challenges for remediation.


Subject(s)
Environmental Policy , Environmental Restoration and Remediation/methods , Metals/analysis , Radioisotopes/analysis , Soil Pollutants/analysis , Adsorption , Metals/chemistry , Radioisotopes/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Water Cycle
5.
Ground Water Monit Remediat ; 30(3): 57-64, 2010.
Article in English | MEDLINE | ID: mdl-23516336

ABSTRACT

Methods are developed to use data collected during cyclic operation of soil vapor extraction (SVE) systems to help characterize the magnitudes and timescales of mass flux associated with vadose zone contaminant sources. Operational data collected at the Department of Energy's Hanford site are used to illustrate the use of such data. An analysis was conducted of carbon tetrachloride vapor concentrations collected during and between SVE operations. The objective of the analysis was to evaluate changes in concentrations measured during periods of operation and non-operation of SVE, with a focus on quantifying temporal dynamics of the vadose zone contaminant mass flux, and associated source strength. Three mass-flux terms, representing mass flux during the initial period of a SVE cycle, during the asymptotic period of a cycle, and during the rebound period, were calculated and compared. It was shown that it is possible to use the data to estimate time frames for effective operation of an SVE system if a sufficient set of historical cyclic operational data exists. This information could then be used to help evaluate changes in SVE operations, including system closure. The mass-flux data would also be useful for risk assessments of the impact of vadose-zone sources on groundwater contamination or vapor intrusion.

6.
J Contam Hydrol ; 59(1-2): 133-62, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12683643

ABSTRACT

Natural attenuation assessment data, collected at a Superfund site located in Louisiana, USA, are presented. The study site is contaminated with large quantities of DNAPL waste products. Source characterization data indicated that chlorinated ethene and ethane compounds are the major contaminants of concern. This case study illustrates the steps involved in implementing the U.S. EPA's [U.S. EPA, 1998. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water, by Wiedmeier, T.H., Swnason, M.A., Moutoux, D.E., Gordon, E.K., Wilson, J.T., Wilson, B.H., Kampbell, D.H., Hass, P.E., Miller, R.N., Hansen, J. E., Chapelle, F.H., Office of Research and Development, EPA/600/R-98/128] monitored natural attenuation (MNA) screening protocol at this chlorinated solvent site. In the first stage of the MNA assessment process, the field data collected from four monitoring wells located in different parts of the plume were used to complete a biodegradation scoring analysis recommended by the protocol. The analysis indicates that the site has the potential for natural attenuation. In the second stage, a detailed conceptual model was developed to identify various contaminant transport pathways and exposure points. The U.S. EPA model and BIOCHLOR was used to assess whether the contaminants are attenuating at a reasonable rate along these transport paths so that MNA can be considered as a feasible remedial option for the site. The site data along with the modeling results indicate that the chlorinated ethene and chlorinated ethane plumes are degrading and will attenuate within 1000 ft down gradient from the source, well before reaching the identified exposure point Therefore, MNA can be considered as one of the feasible remediation options for the site.


Subject(s)
Hazardous Waste , Water Pollution/prevention & control , Environmental Monitoring , Louisiana , Soil Pollutants/analysis , Solvents , United States , United States Environmental Protection Agency , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...