Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 138(24): 5369-78, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22110055

ABSTRACT

During development of the urogenital tract, fibroblast growth factor 8 (Fgf8) is expressed in mesonephric tubules, but its role in this tissue remains undefined. An evaluation of previously generated T-Cre-mediated Fgf8-deficient mice (T-Cre; Fgf8(flox/Δ2,3) mice), which lack Fgf8 expression in the mesoderm, revealed that the cranial region of the Wolffian duct degenerated prematurely and the cranial mesonephric tubules were missing. As a result, the epididymis, vas deferens and efferent ductules were largely absent in mutant mice. Rarb2-Cre was used to eliminate FGF8 from the mesonephric tubules but to allow expression in the adjacent somites. These mutants retained the cranial end of the Wolffian duct and formed the epididymis and vas deferens, but failed to elaborate the efferent ductules, indicating that Fgf8 expression by the mesonephric tubules is required specifically for the formation of the ductules. Ret knockout mice do not form the ureteric bud, a caudal outgrowth of the Wolffian duct and progenitor for the collecting duct network in the kidney, but they do develop the cranial end normally. This indicates that Fgf8, but not Ret, expression is essential to the outgrowth of the cranial mesonephric tubules from the Wolffian duct and to the development of major portions of the sex accessory tissues in the male reproductive tract. Mechanistically, FGF8 functions upstream of Lhx1 expression in forming the nephron, and analysis of Fgf8 mutants similarly shows deficient Lhx1 expression in the mesonephric tubules. These results demonstrate a multifocal requirement for FGF8 in establishing the male reproductive tract ducts and implicate Lhx1 signaling in tubule elongation.


Subject(s)
Fibroblast Growth Factor 8/metabolism , Genitalia, Male/growth & development , Wolffian Ducts/growth & development , Animals , Gene Expression Regulation, Developmental , Genitalia, Male/metabolism , LIM-Homeodomain Proteins/metabolism , Male , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Mice, Knockout , Nephrons/growth & development , Nephrons/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Transcription Factors/metabolism , Urogenital System/growth & development , Urogenital System/metabolism , Wolffian Ducts/metabolism
2.
Mamm Genome ; 20(4): 214-23, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19347398

ABSTRACT

Neurofibromatosis type 1 (NF1) is one of the most common human genetic diseases affecting the nervous system and predisposes individuals to cancer, including peripheral nerve sheath tumors (PNSTs) and astrocytomas. Modifiers in the genetic background affect the severity of the disease and we have previously mapped two modifier loci, Nstr1 and Nstr2, that influence resistance to PNSTs in the Nf1-/+;Trp53-/+cis mouse model of NF1. We report here the analysis of Nstr1 in isolation from other epistatic loci using a chromosome substitution strain, and further show that a modifier locus (or loci) on chromosome 19 influences resistance to both PNSTs and astrocytomas. This modifier locus interacts with sex, resulting in sex-specific modification of tumors. Allele variability on chromosome 19 affects both the timing and the penetrance of the growth of different tumor types associated with NF1, specifically PNSTs and astrocytoma. These results indicate that modifiers of cancer susceptibility interact and affect tumorigenesis under different genetic conditions and demonstrate the power of chromosome substitution strains to study genetic modifiers.


Subject(s)
Astrocytoma/genetics , Chromosomes, Human, Pair 19/genetics , Nerve Sheath Neoplasms/genetics , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neurofibromatosis 1/genetics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...