Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 14898, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358029

ABSTRACT

The structure of the cornea is vital to its transparency, and dystrophies that disrupt corneal organization are highly heritable. To understand the genetic aetiology of Fuchs endothelial corneal dystrophy (FECD), the most prevalent corneal disorder requiring transplantation, we conducted a genome-wide association study (GWAS) on 1,404 FECD cases and 2,564 controls of European ancestry, followed by replication and meta-analysis, for a total of 2,075 cases and 3,342 controls. We identify three novel loci meeting genome-wide significance (P<5 × 10-8): KANK4 rs79742895, LAMC1 rs3768617 and LINC00970/ATP1B1 rs1200114. We also observe an overwhelming effect of the established TCF4 locus. Interestingly, we detect differential sex-specific association at LAMC1, with greater risk in women, and TCF4, with greater risk in men. Combining GWAS results with biological evidence we expand the knowledge of common FECD loci from one to four, and provide a deeper understanding of the underlying pathogenic basis of FECD.


Subject(s)
Fuchs' Endothelial Dystrophy/genetics , Genetic Loci , Genome-Wide Association Study , Humans , ROC Curve , Reproducibility of Results , Risk Factors
2.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24899048

ABSTRACT

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Subject(s)
Genetic Association Studies , Genetic Variation , Macular Degeneration/genetics , Microfilament Proteins/genetics , Adult , Aged , Amino Acid Sequence , Bruch Membrane/metabolism , DNA Mutational Analysis , Exome , Extracellular Matrix/metabolism , Fibrillin-2 , Fibrillins , High-Throughput Nucleotide Sequencing , Humans , Macular Degeneration/diagnosis , Male , Meta-Analysis as Topic , Microfilament Proteins/metabolism , Middle Aged , Models, Molecular , Molecular Sequence Data , Mutation , Pedigree , Protein Conformation , Protein Stability , Retina/metabolism , Retina/pathology , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...