Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(7): e0270224, 2022.
Article in English | MEDLINE | ID: mdl-35776754

ABSTRACT

Understanding factors that influence a species' distribution and abundance across the annual cycle is required for range-wide conservation. Thousands of imperiled red knots (Calidris cantus rufa) stop on Virginia's barrier islands each year to replenish fat during spring migration. We investigated the variation in red knot presence and flock size, the effects of prey on this variation, and factors influencing prey abundance on Virginia's barrier islands. We counted red knots and collected potential prey samples at randomly selected sites from 2007-2018 during a two-week period during early and peak migration. Core samples contained crustaceans (Orders Amphipoda and Calanoida), blue mussels (Mytilus edulis), coquina clams (Donax variabilis), and miscellaneous prey (horseshoe crab eggs (Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g., insect larvae, snails, worms)). Estimated red knot peak counts in Virginia during 21-27 May were highest in 2012 (11,959) and lowest in 2014 (2,857; 12-year peak migration [Formula: see text] = 7,175, SD = 2,869). Red knot and prey numbers varied across sampling periods and substrates (i.e., peat and sand). Red knots generally used sites with more prey. Miscellaneous prey ([Formula: see text] = 2401.00/m2, SE = 169.16) influenced red knot presence at a site early in migration, when we only sampled on peat banks. Coquina clams ([Formula: see text] = 1383.54/m2, SE = 125.32) and blue mussels ([Formula: see text] = 777.91/m2, SE = 259.31) affected red knot presence at a site during peak migration, when we sampled both substrates. Few relationships between prey and red knot flock size existed, suggesting that other unmeasured factors determined red knot numbers at occupied sites. Tide and mean daily water temperature affected prey abundance. Maximizing the diversity, availability, and abundance of prey for red knots on barrier islands requires management that encourages the presence of both sand and peat bank intertidal habitats.


Subject(s)
Bivalvia , Charadriiformes , Animals , Ecosystem , Sand , Seasons , Virginia
2.
PLoS One ; 16(12): e0260339, 2021.
Article in English | MEDLINE | ID: mdl-34972114

ABSTRACT

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


Subject(s)
Animal Migration/physiology , Charadriiformes/physiology , Animals , Canada , Geography , Satellite Communications , Seasons , United States
3.
Sci Rep ; 11(1): 12919, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155292

ABSTRACT

Each year hundreds of millions of birds cross the Atlantic Ocean during the peak of tropical cyclone activity. The extent and consequences of migrant-storm interactions remain unknown. We tracked whimbrels from two populations (Mackenzie Delta; Hudson Bay) to examine overlap between migration routes and storm activity and both the frequency and consequence of storm encounters. Here we show that Mackenzie Delta and Hudson Bay whimbrels follow different routes across the ocean and experience dramatically different rates of storm encounters. Mackenzie Delta whimbrels departed North America from Atlantic Canada, made long ([Formula: see text] = 5440 ± 120.3 km) nonstop flights far out to sea that took several days ([Formula: see text] = 6.1 ± 0.18) to complete and encountered storms during 3 of 22 crossings. Hudson Bay whimbrels departed North America from the south Atlantic Coast, made shorter ([Formula: see text] = 3643 ± 196.2 km) nonstop flights across the Caribbean Basin that took less time ([Formula: see text] = 4.5 ± 0.29) to complete and encountered storms during 13 of 18 crossings. More than half of Hudson Bay storm encounters resulted in groundings on Caribbean islands. Grounded birds required longer ([Formula: see text] = 30.4 ± 5.32 days) to complete trans-Atlantic crossings and three were lost including 2 to hunters and 1 to a predator. One of the Mackenzie Delta whimbrels was lost at sea while crossing the Intertropical Convergence Zone. Whimbrels use two contrasting strategies to cross the Atlantic including (1) a long nonstop flight around the core of storm activity with a low likelihood of encountering storms but no safety net and (2) a shorter flight through the heart of Hurricane Alley with a high likelihood of encountering storms and a safety network of islands to use in the event of an encounter. Demographic consequences of storm encounters will likely play a role in the ongoing evolution of trans-Atlantic migration pathways as global temperatures continue to rise.

4.
PLoS One ; 16(1): e0244459, 2021.
Article in English | MEDLINE | ID: mdl-33444364

ABSTRACT

Predator recovery driven by single-species management approaches may lead to conservation conflicts between recovered predators and prey species of conservation concern. As part of an aggressive recovery plan, the Eastern Peregrine Falcon Recovery Team released (1975-1985) 307 captive-reared peregrine falcons (Falco peregrinus) and successfully established a breeding population within the mid-Atlantic Coastal Plain, a physiographic region with no historic breeding population and a critical spring staging area for migratory shorebirds. We examined the influence of resident falcons on the distribution of foraging red knots during spring migration. We conducted weekly aerial surveys (2006-2009) along the Virginia barrier islands during the spring staging period (25 April- 6 June) to map foraging red knots (Calidris canutus) and evaluated the influence of proximity (0-3, 3-6, >6 km) of beaches to active peregrine falcon nests on knot density (birds/km). Accumulated use of beaches throughout the season by red knots was significantly influenced by proximity of beaches to active falcon nests such that mean density was more than 6 fold higher on beaches that were >6 km compared to beaches that were only 0-3 km from active eyries. Whether or not an eyrie was used in a given year had a significant influence on the use of associated close (0-3 km) beaches. From 6.5 to 64 fold more knots used beaches when associated eyries were not active compared to when they were active depending on the specific site. Historically, red knots and other migratory shorebirds would have enjoyed a peregrine-free zone within this critical staging site. The establishment of a dense breeding population of falcons within the area represents a new hazard for the knot population.


Subject(s)
Charadriiformes/physiology , Falconiformes/physiology , Animals , Predatory Behavior , Seasons , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...