Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 25(2): 442-460, 2020 02.
Article in English | MEDLINE | ID: mdl-30108314

ABSTRACT

Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.


Subject(s)
Amygdala/metabolism , Fear/physiology , Panic/physiology , Animals , Basolateral Nuclear Complex/metabolism , Brain/metabolism , Extinction, Psychological/physiology , Frontal Lobe/metabolism , Glutamic Acid/metabolism , Inhibition, Psychological , Male , Optogenetics/methods , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission/physiology
2.
Neuroscience ; 160(2): 284-94, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19258024

ABSTRACT

The basolateral amygdala (BL) is a putative site for regulating anxiety, where inhibition and excitation respectively lead to decreases and increases in anxiety-like behaviors. The BL contains local networks of GABAergic interneurons that are subdivided into classes based on neurochemical content, and are hypothesized to regulate unique functional responses of local glutamatergic projection neurons. Recently it was demonstrated that lesioning a portion of the BL interneuronal population, those interneurons that express neurokinin1 receptors (NK(1r)), resulted in anxiety-like behavior. In the current study, these NK(1r) expressing cells of the BL are further phenotypically characterized, demonstrating approximately 80% co-expression with GABA thus confirming them as GABAergic interneurons. These NK(1r) interneurons also colocalize with two distinct populations of BL interneurons as defined by the neuropeptide content. Of the NK(1r) positive cells, 41.8% are also positive for neuropeptide Y (NPY) and 39.7% of the NK(1r) positive cells are also positive for cholecystokinin (CCK). In addition to enhancing the phenotypic characterization, the extent to which the NK(1r) cells of amygdala nuclei contribute to anxiety-like responses was also investigated. Lesioning the NK(1r) expressing interneurons, with a stable form of substance P (SSP; the natural ligand for NK(1r)) coupled to the targeted toxin saporin (SAP), in the anterior and posterior divisions of the BL was correlated to increased anxiety-like behaviors compared to baseline and control treated rats. Furthermore the phenotypic and regional selectivity of the lesions was also confirmed.


Subject(s)
Amygdala/cytology , Anxiety/metabolism , Behavior, Animal/physiology , Interneurons/metabolism , Receptors, Neurokinin-1/metabolism , Amygdala/metabolism , Amygdala/physiopathology , Analysis of Variance , Animals , Anxiety/physiopathology , Exploratory Behavior/physiology , Interneurons/classification , Male , Neuropeptide Y/metabolism , Rats , Rats, Sprague-Dawley , Social Environment , Statistics, Nonparametric , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...