Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Innovations (Phila) ; 18(4): 326-330, 2023.
Article in English | MEDLINE | ID: mdl-37551700

ABSTRACT

Alternative access transcatheter aortic valve replacement (TAVR) consists primarily of 4 different options: transcaval, transaxillary, transcarotid, and transapical. While many centers have a preferred alternative access site, few papers have compared the outcomes of TAVR with each alternative access site. In this review, we examine the outcomes of TAVR at each alternative access site, focusing on mortality, stroke, bleeding, pacemaker insertion, paravalvular leakage, and discharge to home. Notable findings include higher mortality in the transapical group and higher stroke rate in the transaxillary group. On the basis of these data, we suggest that transcarotid TAVR might represent the second choice of approach for TAVR when alternate access is required.


Subject(s)
Aortic Valve Stenosis , Stroke , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Risk Factors , Treatment Outcome , Stroke/epidemiology
2.
Innovations (Phila) ; 18(2): 124-125, 2023.
Article in English | MEDLINE | ID: mdl-36883672

ABSTRACT

A 71-year-old man underwent transcatheter edge-to-edge repair for treatment of severe functional mitral regurgitation.


Subject(s)
Heart Valve Prosthesis Implantation , Mitral Valve Insufficiency , Male , Humans , Aged , Mitral Valve Insufficiency/surgery , Mitral Valve/surgery , Cardiac Catheterization , Treatment Outcome
3.
ACS Med Chem Lett ; 14(2): 191-198, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793423

ABSTRACT

Macrocyclic retinoic acid receptor-related orphan receptor C2 (RORC2) inverse agonists have been designed with favorable properties for topical administration. Inspired by the unanticipated bound conformation of an acyclic sulfonamide-based RORC2 ligand from cocrystal structure analysis, macrocyclic linker connections between the halves of the molecule were explored. Further optimization of analogues was accomplished to maximize potency and refine physiochemical properties (MW, lipophilicity) best suited for topical application. Compound 14 demonstrated potent inhibition of interleukin-17A (IL-17A) production by human Th17 cells and in vitro permeation through healthy human skin achieving high total compound concentration in both skin epidermis and dermis layers.

4.
J Org Chem ; 85(23): 15660-15666, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33226802

ABSTRACT

In a recent methodological study investigating the synthesis of N-alkoxyazomethine ylides, an unexpected aminal byproduct was generated during our attempt to isolate O-benzyl-N-((trimethylsilyl)methyl)hydroxylamine. After a strategic investigation, silica gel was discovered to be the cause of the byproduct formation. Through the mechanistic insight from control and trapping experiments, we propose the formation of a methaniminium ion via a novel aza-Peterson reaction, which ultimately triggers a sequential iminium ion cascade sequence. Herein, we discuss the elucidation of this cascade reaction mechanism and the constraints for the byproduct formation.

5.
Bioorg Med Chem ; 28(10): 115481, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32253095

ABSTRACT

Herein, we disclose a new series of TYK2/ JAK1 inhibitors based upon a 3.1.0 azabicyclic substituted pyrimidine scaffold. We illustrate the use of structure-based drug design for the initial design and subsequent optimization of this series of compounds. One advanced example 19 met program objectives for potency, selectivity and ADME, and demonstrated oral activity in the adjuvant-induced arthritis rat model.


Subject(s)
Arthritis, Experimental/drug therapy , Drug Design , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , TYK2 Kinase/antagonists & inhibitors , Animals , Arthritis, Experimental/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Janus Kinase 1/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Inbred Lew , Structure-Activity Relationship , TYK2 Kinase/metabolism
6.
ACS Chem Biol ; 14(6): 1235-1242, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31082193

ABSTRACT

PF-06651600 was developed as an irreversible inhibitor of JAK3 with selectivity over the other three JAK isoforms. A high level of selectivity toward JAK3 is achieved by the covalent interaction of PF-06651600 with a unique cysteine residue (Cys-909) in the catalytic domain of JAK3, which is replaced by a serine residue in the other JAK isoforms. Importantly, 10 other kinases in the kinome have a cysteine at the equivalent position of Cys-909 in JAK3. Five of those kinases belong to the TEC kinase family including BTK, BMX, ITK, RLK, and TEC and are also inhibited by PF-06651600. Preclinical data demonstrate that inhibition of the cytolytic function of CD8+ T cells and NK cells by PF-06651600 is driven by the inhibition of TEC kinases. On the basis of the underlying pathophysiology of inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, alopecia areata, and vitiligo, the dual activity of PF-06651600 toward JAK3 and the TEC kinase family may provide a beneficial inhibitory profile for therapeutic intervention.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Mice
7.
ACS Med Chem Lett ; 10(1): 80-85, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655951

ABSTRACT

Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.

8.
J Med Chem ; 61(23): 10665-10699, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30423248

ABSTRACT

Ongoing interest in the discovery of selective JAK3 inhibitors led us to design novel covalent inhibitors that engage the JAK3 residue Cys909 by cyanamide, a structurally and mechanistically differentiated electrophile from other cysteine reacting groups previously incorporated in JAK3 covalent inhibitors. Through crystallography, kinetic, and computational studies, interaction of cyanamide 12 with Cys909 was optimized leading to potent and selective JAK3 inhibitors as exemplified by 32. In relevant cell-based assays and in agreement with previous results from this group, 32 demonstrated that selective inhibition of JAK3 is sufficient to drive JAK1/JAK3-mediated cellular responses. The contribution from extrahepatic processes to the clearance of cyanamide-based covalent inhibitors was also characterized using metabolic and pharmacokinetic data for 12. This work also gave key insights into a productive approach to decrease glutathione/glutathione S-transferase-mediated clearance, a challenge typically encountered during the discovery of covalent kinase inhibitors.


Subject(s)
Cyanamide/chemistry , Cyanamide/pharmacology , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Cyanamide/pharmacokinetics , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 3/chemistry , Male , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Rats , Tissue Distribution
9.
J Med Chem ; 61(19): 8597-8612, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30113844

ABSTRACT

Cytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling. Intervention with monoclonal antibodies (mAbs) or JAK1 inhibitors has demonstrated efficacy in Phase III psoriasis, psoriatic arthritis, inflammatory bowel disease, and rheumatoid arthritis studies, leading to multiple drug approvals. We hypothesized that a dual JAK1/TYK2 inhibitor will provide additional efficacy, while managing risk by optimizing selectivity against JAK2 driven hematopoietic changes. Our program began with a conformationally constrained piperazinyl-pyrimidine Type 1 ATP site inhibitor, subsequent work led to the discovery of PF-06700841 (compound 23), which is in Phase II clinical development (NCT02969018, NCT02958865, NCT03395184, and NCT02974868).


Subject(s)
Antitubercular Agents/pharmacology , Arthritis, Experimental/prevention & control , Janus Kinase 1/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Tuberculosis/complications , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/microbiology , Female , Molecular Structure , Rats , Rats, Inbred Lew , Tuberculosis/microbiology
10.
ACS Comb Sci ; 20(5): 256-260, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29618198

ABSTRACT

A modular, two-pot assembly of 7-arylpyrazolo[1,5- a]pyrimidones from aryl/heteroaryl halides and aminopyrazoles in library format was developed. Sonogashira coupling of aryl bromides with triethyl orthopropiolate, followed by in situ orthoester hydrolysis, provides access to ß-aryl ynoates, which undergo regioselective cyclocondensation with aminopyrazoles. The ability to vary the C7 vector of 7-arylpyrazolo[1,5- a]pyrimidones in two steps using readily available (hetero)aryl halides significantly enhances synthetic access to this challenging vector.


Subject(s)
Pyrazoles/chemistry , Pyrimidinones/chemistry , Catalysis , Coordination Complexes/chemistry , Hydrolysis , Oxidation-Reduction , Palladium/chemistry , Stereoisomerism
11.
Rev Bras Ter Intensiva ; 29(3): 287-292, 2017.
Article in Portuguese, English | MEDLINE | ID: mdl-28876405

ABSTRACT

OBJECTIVE: This prospective study aimed to characterize the changes in blood lactate concentration and blood oxygen saturation in patients during the immediate postoperative period of cardiac surgery with extracorporeal circulation. METHODS: Blood samples were collected from 35 patients in a rapid and random order from the arterial line and from the proximal and distal port of a pulmonary artery catheter. RESULTS: The results showed no statistically significant differences between the blood oxygen saturation in the right atrium (72% ± 0.11%) and the blood oxygen saturation in the pulmonary artery (71% ± 0.08%). The blood lactate concentration in the right atrium was 1.7mmol/L ± 0.5mmol/L, and the blood lactate concentration in the pulmonary artery was 1.6mmol/L ± 0.5mmol/L (p < 0.0005). CONCLUSION: The difference between the blood lactate concentration in the right atrium and the blood lactate concentration in the pulmonary artery might be a consequence of the low blood lactate concentration in the blood from the coronary sinus, as it constitutes an important substrate for the myocardium during this period. The lack of differences between the blood oxygen saturation in the right atrium and the percentage of blood oxygen saturation in the pulmonary artery suggests a lower oxygen extraction by the myocardium given a lower oxygen consumption.


OBJETIVO: Caracterizar as modificações na concentração sanguínea do lactato e da saturação de oxigênio em pacientes no pós-operatório imediato de cirurgia cardíaca com circulação extracorpórea. MÉTODOS: Foram coletadas amostras de sangue de 35 pacientes, de forma rápida e aleatória, do acesso arterial e das portas proximal e distal de um cateter pulmonar. RESULTADOS: Não foram verificadas diferenças estatisticamente significantes entre saturação de oxigênio no átrio direito (72% ± 0,11%) e na artéria pulmonar (71% ± 0,08%). A concentração sanguínea de lactato no átrio direito foi de 1,7mmol/L ± 0,5mmol/L, enquanto na artéria pulmonar esta concentração foi de 1,6mmol/L ± 0,5mmol/L (p < 0,0005). CONCLUSÃO: A diferença entre as concentrações sanguíneas de lactato no átrio direito e na artéria pulmonar pode ser consequência da baixa concentração de lactato no sangue do seio coronário, já que o lactato é um importante substrato para o miocárdio durante este período. A ausência de diferenças entre saturação sanguínea de oxigênio no átrio direito e na artéria pulmonar sugere extração de oxigênio mais baixa pelo miocárdio, em razão do menor consumo de oxigênio.


Subject(s)
Cardiac Surgical Procedures/methods , Extracorporeal Circulation/methods , Lactic Acid/blood , Oxygen/blood , Aged , Female , Heart Atria , Humans , Male , Middle Aged , Myocardium/metabolism , Postoperative Period , Prospective Studies , Pulmonary Artery
12.
PLoS One ; 12(9): e0184843, 2017.
Article in English | MEDLINE | ID: mdl-28934246

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antibodies/metabolism , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme-Linked Immunosorbent Assay , Fluorescence Polarization , Humans , Mass Spectrometry , Models, Molecular , Molecular Structure , Nucleotides, Cyclic/immunology , Nucleotidyltransferases/metabolism , Protein Binding , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis
13.
Protein Sci ; 26(12): 2367-2380, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28940468

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is activated by ds-DNA binding to produce the secondary messenger 2',3'-cGAMP. cGAS is an important control point in the innate immune response; dysregulation of the cGAS pathway is linked to autoimmune diseases while targeted stimulation may be of benefit in immunoncology. We report here the structure of cGAS with dinucleotides and small molecule inhibitors, and kinetic studies of the cGAS mechanism. Our structural work supports the understanding of how ds-DNA activates cGAS, suggesting a site for small molecule binders that may cause cGAS activation at physiological ATP concentrations, and an apparent hotspot for inhibitor binding. Mechanistic studies of cGAS provide the first kinetic constants for 2',3'-cGAMP formation, and interestingly, describe a catalytic mechanism where 2',3'-cGAMP may be a minor product of cGAS compared with linear nucleotides.


Subject(s)
Nucleotides, Cyclic/chemistry , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Asparagine/chemistry , Binding Sites , DNA/chemistry , DNA/metabolism , Humans , Immunity, Innate , Kinetics , Models, Molecular , Nucleotidyltransferases/genetics , Protein Conformation, alpha-Helical
14.
Rev. bras. ter. intensiva ; 29(3): 287-292, jul.-set. 2017. tab, graf
Article in Portuguese | LILACS | ID: biblio-899520

ABSTRACT

RESUMO Objetivo: Caracterizar as modificações na concentração sanguínea do lactato e da saturação de oxigênio em pacientes no pós-operatório imediato de cirurgia cardíaca com circulação extracorpórea. Métodos: Foram coletadas amostras de sangue de 35 pacientes, de forma rápida e aleatória, do acesso arterial e das portas proximal e distal de um cateter pulmonar. Resultados: Não foram verificadas diferenças estatisticamente significantes entre saturação de oxigênio no átrio direito (72% ± 0,11%) e na artéria pulmonar (71% ± 0,08%). A concentração sanguínea de lactato no átrio direito foi de 1,7mmol/L ± 0,5mmol/L, enquanto na artéria pulmonar esta concentração foi de 1,6mmol/L ± 0,5mmol/L (p < 0,0005). Conclusão: A diferença entre as concentrações sanguíneas de lactato no átrio direito e na artéria pulmonar pode ser consequência da baixa concentração de lactato no sangue do seio coronário, já que o lactato é um importante substrato para o miocárdio durante este período. A ausência de diferenças entre saturação sanguínea de oxigênio no átrio direito e na artéria pulmonar sugere extração de oxigênio mais baixa pelo miocárdio, em razão do menor consumo de oxigênio.


ABSTRACT Objective: This prospective study aimed to characterize the changes in blood lactate concentration and blood oxygen saturation in patients during the immediate postoperative period of cardiac surgery with extracorporeal circulation. Methods: Blood samples were collected from 35 patients in a rapid and random order from the arterial line and from the proximal and distal port of a pulmonary artery catheter. Results: The results showed no statistically significant differences between the blood oxygen saturation in the right atrium (72% ± 0.11%) and the blood oxygen saturation in the pulmonary artery (71% ± 0.08%). The blood lactate concentration in the right atrium was 1.7mmol/L ± 0.5mmol/L, and the blood lactate concentration in the pulmonary artery was 1.6mmol/L ± 0.5mmol/L (p < 0.0005). Conclusion: The difference between the blood lactate concentration in the right atrium and the blood lactate concentration in the pulmonary artery might be a consequence of the low blood lactate concentration in the blood from the coronary sinus, as it constitutes an important substrate for the myocardium during this period. The lack of differences between the blood oxygen saturation in the right atrium and the percentage of blood oxygen saturation in the pulmonary artery suggests a lower oxygen extraction by the myocardium given a lower oxygen consumption.


Subject(s)
Humans , Male , Female , Aged , Oxygen/blood , Lactic Acid/blood , Extracorporeal Circulation/methods , Cardiac Surgical Procedures/methods , Postoperative Period , Pulmonary Artery , Prospective Studies , Heart Atria , Middle Aged , Myocardium/metabolism
15.
FP Essent ; 457: 23-29, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28671806

ABSTRACT

Patients undergoing cardiac valve replacement may receive mechanical or bioprosthetic valves. Mechanical valves require lifelong anticoagulation but are durable and the need for a second surgery is up to eightfold times less than with bioprosthetic valves. Bioprosthetic valves do not require lifelong anticoagulation and thus are associated with fewer bleeding complications but they are less durable and associated with higher morbidity and mortality rates, particularly in younger patients. Anticoagulation with mechanical valves is achieved using warfarin; use of direct-acting oral anticoagulants is not indicated. Concomitant low-dose aspirin is recommended for patients with mechanical valves and as sole thromboembolism prophylaxis for patients receiving aortic or mitral bioprosthetic valves. If a patient taking warfarin is to undergo a surgical procedure that requires interruption of anticoagulation, bridging therapy with heparin is indicated if the patient has a mechanical aortic valve and any risk of thromboembolism, an older-generation mechanical aortic valve, or a mechanical mitral valve. Warfarin is teratogenic; pregnant women should take heparin. Patients with mechanical or bioprosthetic valves should receive antibiotic prophylaxis before some dental and surgical procedures to prevent endocarditis. Thrombolytic therapy should be considered in patients who develop a thrombus on a valve that does not resolve with heparin.


Subject(s)
Anticoagulants/therapeutic use , Endocarditis/prevention & control , Heart Valve Diseases/surgery , Heart Valve Prosthesis/adverse effects , Thromboembolism/prevention & control , Warfarin/therapeutic use , Antibiotic Prophylaxis/methods , Bioprosthesis , Female , Heparin/therapeutic use , Humans , Platelet Aggregation Inhibitors/therapeutic use , Pregnancy , Pregnancy Complications, Cardiovascular/prevention & control , Prosthesis Design
16.
J Med Chem ; 60(5): 1971-1993, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28139931

ABSTRACT

Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Signal Transduction/drug effects , Administration, Oral , Drug Design , Humans , Janus Kinase 3/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrroles/administration & dosage , Pyrroles/pharmacology
17.
ACS Chem Biol ; 11(12): 3442-3451, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27791347

ABSTRACT

PF-06651600, a newly discovered potent JAK3-selective inhibitor, is highly efficacious at inhibiting γc cytokine signaling, which is dependent on both JAK1 and JAK3. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Importantly, by sparing JAK1 function, PF-06651600 selectively targets γc cytokine pathways while preserving JAK1-dependent anti-inflammatory signaling such as the IL-10 suppressive functions following LPS treatment in macrophages and the suppression of TNFα and IL-1ß production in IL-27-primed macrophages. Thus, JAK3-selective inhibition differentiates from pan-JAK or JAK1 inhibition in various immune cellular responses, which could potentially translate to advantageous clinical outcomes in inflammatory and autoimmune diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Animals , Arthritis, Experimental/immunology , Disease Models, Animal , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Interleukin-10/immunology , Interleukin-1beta/immunology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 3/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/immunology
18.
Article in English | MEDLINE | ID: mdl-24352819

ABSTRACT

In a cross-sectional study, we examined the role of explanatory styles and negative life events in the depressive experiences of AI youth. Ninetythree AI youth (49% female, ages 11-14 years) completed surveys assessing for explanatory style, negative life events, and depressive symptoms. Path analyses indicated that both the occurrence of negative life events within the past 6 months and a pessimistic explanatory style predicted more depressive symptoms. However, a moderation path model provided a superior fit to the data, indicating that the occurrence of negative life events was more strongly associated with depressive symptoms for those AI youth with a more pessimistic explanatory style. Findings are discussed in terms of potential interventions that can promote the well-being of this understudied and underserved population.


Subject(s)
Depression/ethnology , Indians, North American/ethnology , Life Change Events , Personality , Adolescent , Child , Cross-Sectional Studies , Female , Humans , Male , Midwestern United States/ethnology
19.
Bioorg Med Chem Lett ; 22(11): 3795-9, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22546671

ABSTRACT

The inhibition of hH-PGDS has been proposed as a potential target for the development of anti-allergic and anti-inflammatory drugs. Herein we describe our investigation of the binding pocket of this important enzyme and our observation that two water molecules bind to our inhibitors and the enzyme. A series of compounds were prepared to the probe the importance of the water molecules in determining the binding affinity of the inhibitors to the enzyme. The study provides insight into the binding requirements for the design of potent hH-PGDS inhibitors.


Subject(s)
Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Enzyme Inhibitors/chemistry , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Water/chemistry , Anti-Allergic Agents/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Binding Sites , Computer Simulation , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Humans , Intramolecular Oxidoreductases/metabolism , Isoquinolines/chemistry , Lipocalins/metabolism , Naphthalenes/chemistry , Protein Structure, Tertiary
20.
Expert Opin Ther Pat ; 21(7): 1045-69, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21548849

ABSTRACT

INTRODUCTION: MAPK/extracellular signal-regulated kinase (MEK) inhibitors target the Ras/Raf/MEK/ERK signaling pathway, which is important in cell growth, differentiation and development. The pathway has been implicated in the progression of a variety of diseases, in particular cancer, as well as in immune and inflammatory diseases such as rheumatoid arthritis, organ transplant rejection, septic shock, asthma and viral infection. AREAS COVERED: A comprehensive review of the patent literature (2008 - 2010) covering MEK inhibitors and combinations thereof is provided in this paper. EXPERT OPINION: The first MEK inhibitor was described in the literature in 1995, and several companies are still active in the research and development of MEK inhibitors for various disease states. The emerging role of MEK inhibitors in disease has prompted further investigations of this important target. The combination of MEK inhibitors with other agents/therapies in the treatment of diseases, particularly cancer, is a key development in the field.


Subject(s)
Drug Delivery Systems , Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Animals , Cell Differentiation/drug effects , Drug Design , Humans , Neoplasms/drug therapy , Neoplasms/physiopathology , Patents as Topic , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...