Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38002082

ABSTRACT

Dent disease (DD) is an X-linked renal tubulopathy characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and progressive renal failure. Two-thirds of cases are associated with inactivating variants in the CLCN5 gene (Dent disease 1, DD1) and a few present variants in the OCRL gene (Dent disease 2, DD2). The aim of the present study was to test the effect on the pre-mRNA splicing process of DD variants, described here or in the literature, and describe the clinical and genotypic features of thirteen unrelated patients with suspected DD. All patients presented tubular proteinuria, ten presented hypercalciuria and five had nephrolithiasis or nephrocalcinosis. CLCN5 and OCRL genes were analyzed by Sanger sequencing. Nine patients showed variants in CLCN5 and four in OCRL; eight of these were new. Bioinformatics tools were used to select fifteen variants with a potential effect on pre-mRNA splicing from our patients' group and from the literature, and were experimentally tested using minigene assays. Results showed that three exonic missense mutations and two intronic variants affect the mRNA splicing process. Our findings widen the genotypic spectrum of DD and provide insight into the impact of variants causing DD.

2.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176161

ABSTRACT

Renal hypouricemia (RHUC) is a rare inherited disorder characterized by impaired urate reabsorption in the proximal tubule resulting in low urate serum levels and increased urate excretion. Some patients may present severe complications such as exercise-induced acute renal failure and nephrolithiasis. RHUC is caused by inactivating mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, which encode urate transporters URAT1 and GLUT9, respectively. In this study, our goal was to identify mutations associated with twenty-one new cases with RHUC through direct sequencing of SLC22A12 and SLC2A9 coding exons. Additionally, we carried out an SNPs-haplotype analysis to determine whether the rare SLC2A9 variant c.374C>T; p.(T125M), which is recurrent in Spanish families with RHUC type 2, had a common-linked haplotype. Six intragenic informative SNPs were analyzed using PCR amplification from genomic DNA and direct sequencing. Our results showed that ten patients carried the SLC22A12 mutation c.1400C>T; p.(T467M), ten presented the SLC2A9 mutation c.374C>T, and one carried a new SLC2A9 heterozygous mutation, c.593G>A; p.(R198H). Patients carrying the SLC2A9 mutation c.374C>T share a common-linked haplotype, confirming that it emerged due to a founder effect.


Subject(s)
Kidney Calculi , Organic Anion Transporters , Humans , Uric Acid , Founder Effect , Glucose Transport Proteins, Facilitative/genetics , Organic Cation Transport Proteins/genetics , Organic Anion Transporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...