Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Invest New Drugs ; 37(1): 17-26, 2019 02.
Article in English | MEDLINE | ID: mdl-29721755

ABSTRACT

The substance P/neurokinin-1 receptor system has been implicated in tumor cell proliferation. Neurokinin-1 receptor has been identified in different solid tumors but not frequently in hematopoietic malignant cells. We investigated the presence of the Neurokinin-1 receptor in acute myeloid leukemia cell lines (KG-1 and HL-60), demonstrating that acute myeloid leukemia cell lines overexpress the truncated Neurokinin-1 receptor isoform compared with lymphocytes from healthy donors. Using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we demonstrated that substance P induced cell proliferation in both acute myeloid leukemia cell lines. We also observed that four different Neurokinin-1 receptor antagonists (L-733,060, L-732,138, CP 96-345 and aprepitant) elicited inhibition of acute myeloid leukemia cell growth lines in a concentration-dependent manner, while growth inhibition was only marginal in lymphocytes; the specific antitumor action of Neurokinin-1 receptor antagonists occurs via the Neurokinin-1 receptor, and leukemia cell death is due to apoptosis. Finally, administration of high doses of daily intraperitoneal fosaprepitant to NOD scid gamma mice previously xenografted with the HL60 cell line increased the median survival from 4 days (control group) to 7 days (treated group) (p = 0.059). Taken together, these findings suggest that Neurokinin-1 receptor antagonists suppress leukemic cell growth and may be considered to be potential antitumor drugs for the treatment of human acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/chemistry , Animals , Apoptosis , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Neurokinin-1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...