Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 511: 70-85, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36592924

ABSTRACT

Prenatal exposure to high-energy diets primes brain alterations that increase the risk of developing behavioral and cognitive failures. Alterations in the structure and connectivity of brain involved in learning and memory performance are found in adult obese murine models and in humans. However, the role of prenatal exposure to high-energy diets in the modulation of the brain's structure and function during cognitive decline remains unknown. We used female C57BL6 mice (n = 10) exposed to a high-energy diets (Cafeteria diet (CAF)) or Chow diet for 9 weeks (before, during and after pregnancy) to characterize their effect on brain structural organization and learning and memory performance in the offspring at two-month-old (n = 17). Memory and learning performance were evaluated using the Y-maze test including forced and spontaneous alternation, novel object recognition (NORT), open field and Barnes maze tests. We found no alterations in the short- or long-time spatial memory performance in male offspring prenatally exposed to CAF diet when compared to the control, but they increased time spent in the edges resembling anxiety-like behavior. By using deformation-based morphometry and diffusion tensor imaging analysis we found that male offspring exposed to CAF diet showed increased volume in primary somatosensory cortex and a reduced volume of fimbria-fornix, which correlate with alterations in its white matter integrity. Biological modeling revealed that prenatal exposure to CAF diet predicts low volume in the fimbria-fornix, which was associated with anxiety in the offspring. The findings suggest that prenatal exposure to high-energy diets prime brain structural alterations related to anxiety in the offspring.


Subject(s)
Fornix, Brain , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Mice , Animals , Male , Female , Infant , Diffusion Tensor Imaging , Mice, Inbred C57BL , Diet , Anxiety/etiology , Maze Learning
2.
Neuroimage ; 252: 119039, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35227858

ABSTRACT

Ageing displays a low-grade pro-inflammatory profile in blood and the brain. Accumulation of pro-inflammatory cytokines, microglia activation and volumetric changes in the brain correlate with cognitive decline in ageing models. However, the interplay between them is not totally understood. Here, we aimed to globally identify an age-dependent pro-inflammatory profile and microglia morphological plasticity that favors major volume changes in the brain associated with cognitive decline. Cluster analysis of behavioral data obtained from 2-,12- and 20-month-old male C57BL/6 mice revealed age-dependent cognitive decline after the Y-maze, Barnes maze, object recognition (NORT) and object location tests (OLT). Global magnetic resonance imageing (MRI) analysis by deformation-based morphometry (DBM) in the brain identified a volume increase in the fornix and a decrease in the left medial entorhinal cortex (MEntC) during ageing. Notably, the fornix shows an increase in the accumulation of pro-inflammatory cytokines, whereas the left MEntC displays a decrease. Morphological assessment of microglia also confirms an active and dystrophic phenotype in the fornix and a surveillance phenotype in the left MEntC. Finally, biological modeling revealed that age-related volume increase in the fornix was associated with dystrophic microglia and cognitive impairment, as evidenced by failure on tasks examining memory of object location and novelty. Our results propose that the morphological plasticity of microglia might contribute to volumetric changes in brain regions associated with cognitive decline during physiological ageing.


Subject(s)
Cognitive Dysfunction , Microglia , Aging , Animals , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cytokines , Humans , Male , Memory Disorders/diagnostic imaging , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Spatial Memory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...