Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Ecotoxicology ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066991

ABSTRACT

Cadmium (Cd), a widely distributed environmental pollutant in agroecosystems, causes negative effects on crops and herbivores through bottom-up processes. The gut microbial community of an insect can play a critical role in response to metal stress. To understand how microbiota affect the stress responses of organisms to heavy metals in agroecosystems, we initially used 16S rRNA sequencing to characterize the larval gut microbiota of Chilo suppressalis, an important agricultural pest, exposed to a diet containing Cd. The species richness, diversity, and composition of the gut microbial community was then analyzed. Results revealed that while the richness (Chao1 and ACE) of gut microbiota in larvae exposed to Cd was not significantly affected, diversity (Shannon and Simpson) was reduced due to changes in species distribution and relative abundance. Overall, the most abundant genus was Enterococcus, while the abundance of the genera Micrococcaceae and Faecalibaculum in the control significantly superior to that in Cd-exposed pests. Phylogenetic investigation of microbial communities by the reconstruction of unobserved states (PICRUSt) showed that the intestinal microorganisms appear to participate in 34 pathways, especially those used in environmental information processing and the metabolism of the organism. This study suggests that the gut microbiota of C. suppressalis are significantly impacted by Cd exposure and highlights the importance of the gut microbiome in host stress responses and negative effects of Cd pollution in agroecosystems.

2.
J Econ Entomol ; 116(4): 1041-1062, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37289432

ABSTRACT

Selenium, a naturally occurring metalloid, is an essential trace element for many higher organisms, including humans. Humans primarily become exposed to selenium by ingesting food products containing trace amounts of selenium compounds. Although essential in these small amounts, selenium exhibits toxic effects at higher doses. Previous studies investigating the effects on insects of order Blattodea, Coleoptera, Diptera, Ephemeroptera, Hemiptera, Hymenoptera, Lepidoptera, Odonata, and Orthoptera revealed impacts on mortality, growth, development, and behavior. Nearly every study examining selenium toxicity has shown that insects are negatively affected by exposure to selenium in their food. However, there were no clear patterns of toxicity between insect orders or similarities between insect species within families. At this time, the potential for control will need to be determined on a species-by-species basis. We suspect that the multiple modes of action, including mutation-inducing modification of important amino acids as well as impacts on microbiome composition, influence this variability. There are relatively few studies that have examined the potential effects of selenium on beneficial insects, and the results have ranged from increased predation (a strong positive effect) to toxicity resulting in reduced population growth or even the effective elimination of the natural enemies (more common negative effects). As a result, in those pest systems where selenium use is contemplated, additional research may be necessary to ascertain if selenium use is compatible with key biological control agents. This review explores selenium as a potential insecticide and possible future directions for research.


Subject(s)
Coleoptera , Hemiptera , Orthoptera , Selenium , Humans , Animals , Insecta
3.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37311583

ABSTRACT

Immunological targeting of pathological cells has been successful in oncology and is expanding to other pathobiological contexts. Here, we present a flexible platform that allows labeling cells of interest with the surface-expressed model antigen ovalbumin (OVA), which can be eliminated via either antigen-specific T cells or newly developed OVA antibodies. We demonstrate that hepatocytes can be effectively targeted by either modality. In contrast, pro-fibrotic fibroblasts associated with pulmonary fibrosis are only eliminated by T cells in initial experiments, which reduced collagen deposition in a fibrosis model. This new experimental platform will facilitate development of immune-based approaches to clear potential pathological cell types in vivo.


Subject(s)
Antibodies , Pulmonary Fibrosis , Humans , Fibroblasts , Hepatocytes , Kinetics
4.
Environ Sci Pollut Res Int ; 30(15): 43126-43136, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36648731

ABSTRACT

Heavy metal contaminants may influence tri-trophic interactions among plants, herbivores, and their natural enemies and affect the results of pest management practices. We examined how the widely distributed heavy metal cadmium (Cd) could modify interactions between kidney bean, Phaseolus vulgaris L., western flower thrips, Frankliniella occidentalis Pergande, and a predator, Orius sauteri (Poppius) by examining Cd effects on the feeding damage on leaves, the growth and reproduction of the thrips, and the feeding and plant location selection behaviors of predators. Leaf feeding damage was significantly reduced only at the highest Cd treatment (625 mg L-1). Survival, reproduction, and population growth of thrips decreased with the increase of Cd treatment concentration (0, 25, and 625 mg L-1). The reproduction rate of thrips from the highest Cd treatment group was reduced to less than 30% of the controls. Predator choice of plants was not impacted at the lowest level of Cd treatment (25 mg L-1) when prey were excluded, but the predators were deterred from plants treated at the high level of Cd (625 mg L-1). However, the predators responded strongly to the presence of prey, and the Cd-based deterrence was effectively eliminated when prey were added. Thus, the presence of Cd can cause a bottom-up effect on the fitness of pests without disrupting the foraging behavior of its predator. Our results provide baseline data on the toxic impacts on the pest and predator, and indicate that the ecology of the system and the biological control efficiency would be potentially impacted by high levels of Cd (625 mg L-1).


Subject(s)
Heteroptera , Thysanoptera , Animals , Cadmium , Plants , Reproduction
5.
PLoS One ; 17(9): e0274003, 2022.
Article in English | MEDLINE | ID: mdl-36054184

ABSTRACT

Modeling oviposition as a function of female insect age, temperature, and host plant suitability may provide valuable insight into insect population growth of polyphagous insect pests at a landscape level. In this study, we quantified oviposition by beet leafhoppers, Circulifer (= Neoaliturus) tenellus (Baker) (Hemiptera: Cicadellidae), on four common non-agricultural host plant species [Erodium cicutarium (L.) L'Hér. (Geraniaceae), Kochia scoparia (L.) Schrader (Amaranthaceae), Plantago ovata Forsskál (Plantaginaceae), and Salsola tragus L. (Amaranthaceae)] at two constant temperature conditions. Additionally, temperature-based oviposition models for each host plant species were validated, under semi-field and greenhouse conditions. We found that K. scoparia was the most suitable host plant, and optimal temperature for oviposition was estimated to be 30.6°C. Accordingly, beet leafhoppers appear to be well-adapted to high-temperature conditions, so increasing temperatures due to climate change may favor population growth in non-agricultural areas. Maximum total fecundity (Rm) was used as an indicator of relative suitability of host plants. S. tragus has been considered an important non-agricultural host plant, however, we found that S. tragus and E. cicutarium have lower Rm compared to K. scoparia and P. ovata. The combination of detailed experimental oviposition bioassays, modeling, and model validation is considered widely relevant and applicable to host plant assessments and modeling of population dynamics of other polyphagous insect pests.


Subject(s)
Beta vulgaris , Hemiptera , Moths , Animals , Female , Fertility , Oviposition , Plants , Temperature
6.
Sci Rep ; 12(1): 8429, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589977

ABSTRACT

There is widespread evidence of plant viruses manipulating behavior of their insect vectors as a strategy to maximize infection of plants. Often, plant viruses and their insect vectors have multiple potential host plant species, and these may not overlap entirely. Moreover, insect vectors may not prefer plant species to which plant viruses are well-adapted. In such cases, can plant viruses manipulate their insect vectors to preferentially feed and oviposit on plant species, which are suitable for viral propagation but less suitable for themselves? To address this question, we conducted dual- and no-choice feeding studies (number and duration of probing events) and oviposition studies with non-viruliferous and viruliferous [carrying beet curly top virus (BCTV)] beet leafhoppers [Circulifer tenellus (Baker)] on three plant species: barley (Hordeum vulgare L.), ribwort plantain (Plantago lanceolata L.), and tomato (Solanum lycopersicum L.). Barley is not a host of BCTV, whereas ribwort plantain and tomato are susceptible to BCTV infection and develop a symptomless infection and severe curly top symptoms, respectively. Ribwort plantain plants can be used to maintain beet leafhopper colonies for multiple generations (suitable), whereas tomato plants cannot be used to maintain beet leafhopper colonies (unsuitable). Based on dual- and no-choice experiments, we demonstrated that BCTV appears to manipulate probing preference and behavior by beet leafhoppers, whereas there was no significant difference in oviposition preference. Simulation modeling predicted that BCTV infection rates would to be higher in tomato fields with barley compared with ribwort plantain as a trap crop. Simulation model results supported the hypothesis that manipulation of probing preference and behavior may increase BCTV infection in tomato fields. Results presented were based on the BCTV-beet leafhopper pathosystem, but the approach taken (combination of experimental studies with complementary simulation modeling) is widely applicable and relevant to other insect-vectored plant pathogen systems involving multiple plant species.


Subject(s)
Beta vulgaris , Geminiviridae , Hemiptera , Plant Viruses , Animals , Female , Insect Vectors , Plant Diseases , Plants
7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526689

ABSTRACT

Citrus Huanglongbing (HLB), caused by a vector-transmitted phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease worldwide. Currently, there are no effective strategies to prevent infection or to cure HLB-positive trees. Here, using comparative analysis between HLB-sensitive citrus cultivars and HLB-tolerant citrus hybrids and relatives, we identified a novel class of stable antimicrobial peptides (SAMPs). The SAMP from Microcitrusaustraliasica can rapidly kill Liberibacter crescens (Lcr), a culturable Liberibacter strain, and inhibit infections of CLas and CL. solanacearum in plants. In controlled greenhouse trials, SAMP not only effectively reduced CLas titer and disease symptoms in HLB-positive trees but also induced innate immunity to prevent and inhibit infections. Importantly, unlike antibiotics, SAMP is heat stable, making it better suited for field applications. Spray-applied SAMP was taken up by citrus leaves, stayed stable inside the plants for at least a week, and moved systemically through the vascular system where CLas is located. We further demonstrate that SAMP is most effective on α-proteobacteria and causes rapid cytosol leakage and cell lysis. The α-helix-2 domain of SAMP is sufficient to kill Lcr Future field trials will help determine the efficacy of SAMP in controlling HLB and the ideal mode of application.


Subject(s)
Citrus/drug effects , Plant Diseases/prevention & control , Pore Forming Cytotoxic Proteins/pharmacology , Rutaceae/chemistry , Citrus/microbiology , Disease Resistance/genetics , Liberibacter/drug effects , Liberibacter/pathogenicity , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics
8.
Aging Cell ; 20(3): e13313, 2021 03.
Article in English | MEDLINE | ID: mdl-33561324

ABSTRACT

Pregnancy-associated plasma protein-A (PAPP-A) is a secreted metalloprotease that increases insulin-like growth factor (IGF) availability by cleaving IGF-binding proteins. Reduced IGF signaling extends longevity in multiple species, and consistent with this, PAPP-A deletion extends lifespan and healthspan; however, the mechanism remains unclear. To clarify PAPP-A's role, we developed a PAPP-A neutralizing antibody and treated adult mice with it. Transcriptomic profiling across tissues showed that anti-PAPP-A reduced IGF signaling and extracellular matrix (ECM) gene expression system wide. The greatest reduction in IGF signaling occurred in the bone marrow, where we found reduced bone, marrow adiposity, and myelopoiesis. These diverse effects led us to search for unifying mechanisms. We identified mesenchymal stromal cells (MSCs) as the source of PAPP-A in bone marrow and primary responders to PAPP-A inhibition. Mice treated with anti-PAPP-A had reduced IGF signaling in MSCs and dramatically decreased MSC number. As MSCs are (1) a major source of ECM and the progenitors of ECM-producing fibroblasts, (2) the originating source of adult bone, (3) regulators of marrow adiposity, and (4) an essential component of the hematopoietic niche, our data suggest that PAPP-A modulates bone marrow homeostasis by potentiating the number and activity of MSCs. We found that MSC-like cells are the major source of PAPP-A in other tissues also, suggesting that reduced MSC-like cell activity drives the system-wide reduction in ECM gene expression due to PAPP-A inhibition. Dysregulated ECM production is associated with aging and drives age-related diseases, and thus, this may be a mechanism by which PAPP-A deficiency enhances longevity.


Subject(s)
Homeostasis , Longevity , Mesenchymal Stem Cells/metabolism , Pregnancy-Associated Plasma Protein-A/antagonists & inhibitors , Animals , Antibodies, Neutralizing/metabolism , Bone Marrow/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Models, Biological , Myelopoiesis , Osteoblasts/metabolism , Osteogenesis , Pregnancy-Associated Plasma Protein-A/metabolism , Signal Transduction , Somatomedins/metabolism
9.
Plant Biotechnol J ; 19(4): 757-766, 2021 04.
Article in English | MEDLINE | ID: mdl-33108698

ABSTRACT

Huanglongbing (HLB) is the most devastating citrus disease in the world. Almost all commercial citrus varieties are susceptible to the causal bacterium, Candidatus Liberibacter asiaticus (CLas), which is transmitted by the Asian citrus psyllid (ACP). Currently, there are no effective management strategies to control HLB. HLB-tolerant traits have been reported in some citrus relatives and citrus hybrids, which offer a direct pathway for discovering natural defence regulators to combat HLB. Through comparative analysis of small RNA profiles and target gene expression between an HLB-tolerant citrus hybrid (Poncirus trifoliata × Citrus reticulata) and a susceptible citrus variety, we identified a panel of candidate defence regulators for HLB-tolerance. These regulators display similar expression patterns in another HLB-tolerant citrus relative, with a distinct genetic and geographic background, the Sydney hybrid (Microcitrus virgata). Because the functional validation of candidate regulators in tree crops is always challenging, we developed a novel rapid functional screening method, using a C. Liberibacter solanacearum (CLso)/potato psyllid/Nicotiana benthamiana interaction system to mimic the natural transmission and infection circuit of the HLB complex. When combined with efficient virus-induced gene silencing in N. benthamiana, this innovative and cost-effective screening method allows for rapid identification and functional characterization of regulators involved in plant immune responses against HLB, such as the positive regulator BRCA1-Associated Protein, and the negative regulator Vascular Associated Death Protein.


Subject(s)
Citrus , Hemiptera , Poncirus , Rhizobiaceae , Animals , Citrus/genetics , Plant Diseases
10.
Article in English | MEDLINE | ID: mdl-32599020

ABSTRACT

Honey bees (Apis mellifera L.) are important ecological and agricultural resources. They are among the most widely available pollinators and provide products as well as services. Unfortunately, honey bee populations are susceptible to several environmental threats, including heavy metal exposure. Honey bees can be exposed to heavy metals when foraging on contaminated honey and pollen resources, and in some cases by airborne exposure. We studied the joint acute and chronic effects of cadmium (Cd) and copper (Cu) on A. mellifera. A 1:1 solution of the two heavy metals increased larval developmental duration and the mortality of both larvae and foragers in a dose-dependent way, decreased forager feeding, increased body metal burdens, and disrupted the sucrose response behavior of foragers. In combination, Cd and Cu demonstrated a weakly synergistic effect on foragers, but for larvae an initially antagonistic effect at low doses changed to strongly synergistic response at higher concentrations. The sucrose response threshold of foragers decreased significantly when they were dosed with increasing concentrations of the metal mixtures. Overall, the fitness of honey bee larvae and foragers is detrimentally affected when these metals co-occur.


Subject(s)
Bees/drug effects , Cadmium/toxicity , Copper/toxicity , Animals , Bees/physiology , Drug Combinations , Drug Synergism , Feeding Behavior/drug effects , Heavy Metal Poisoning/etiology , Heavy Metal Poisoning/pathology , Larva/drug effects , Sucrose/metabolism , Toxicity Tests, Acute
11.
Annu Rev Entomol ; 65: v-vi, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31923379
12.
J Econ Entomol ; 112(4): 1926-1931, 2019 08 03.
Article in English | MEDLINE | ID: mdl-31220296

ABSTRACT

Acylsugars have been shown to provide activity against numerous insect pests of tomatoes. Comparison of acylsugar levels in four tomato plant lines, FA7/AS, FA2/AS, CU071026, and 'Yellow Pear', found that the acylsugar contents in the elevated acylsugar lines were significantly higher than the commercial Yellow Pear (control) tomato plant line. Adult choice tests indicated that the tomato psyllid, Bactericera cockerelli, preferred to settle on the Yellow Pear and FA2/AS lines over the line with the highest content of acylsugars, FA7/AS, and the parental line, CU071026. The no-choice test demonstrated that adults laid fewer eggs on the high acylsugar tomato lines than on the control tomato line, Yellow Pear. For all high acylsugar lines, the relative growth index of the psyllid was significantly lower compared with the commercial line, indicating a reduced potential for population growth. Although some tomato psyllids completed their life cycle on the high acylsugar tomato plant lines, the percent survival of psyllids to the adult stage when developing on the high acylsugar lines was significantly less (range = 43.7-57.1%) than on the commercial tomato line (83.8%). All mortality occurred during the early stages of development (egg stage to third instar), which has implications for acquisition and transmission of Candidatus Liberibacter solanacearum, the causal agent of tomato vein greening disease. Therefore, with reduced attractiveness for tomato psyllids and significantly reduced survival, the high-acylsugar tomato plant lines have the potential to be part of an integrated pest management program for this pest.


Subject(s)
Hemiptera , Pyrus , Rhizobiaceae , Solanum lycopersicum , Solanum tuberosum , Animals , Plant Diseases
13.
Sci Rep ; 9(1): 4253, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862878

ABSTRACT

Heavy metal toxicity is an ecological concern in regions affected by processes like mining, industry, and agriculture. At sufficiently high concentrations, heavy metals are lethal to honey bees, but little is known about how sublethal doses affect honey bees or whether they will consume contaminated food. We investigated whether honey bees reject sucrose solutions contaminated with three heavy metals - cadmium, copper, and lead - as a measure of their ability to detect the metals, and whether ingesting these metals altered the bees' sucrose sensitivity. The metals elicited three different response profiles in honey bees. Cadmium was not rejected in any of the assays, and ingesting cadmium did not alter sucrose sensitivity. Copper was rejected following antennal stimulation, but was readily consumed following proboscis stimulation. Ingestion of copper did not alter sucrose sensitivity. Lead appeared to be palatable at some concentrations and altered the bees' sensitivity to and/or valuation of sucrose following antennal stimulation or ingestion of the metal. These differences likely represent unique mechanisms for detecting each metal and the pathology of toxicity. The bees' ability to detect and consume these toxic metals highlights the risk of exposure to these elements for bees living in or near contaminated environments.


Subject(s)
Bees/drug effects , Environmental Pollutants/toxicity , Feeding Behavior/drug effects , Heavy Metal Poisoning/veterinary , Metals, Heavy/toxicity , Animals , Arthropod Antennae/drug effects , Arthropod Antennae/physiology , Bees/physiology , Dose-Response Relationship, Drug , Feeding Behavior/physiology , Heavy Metal Poisoning/physiopathology , Soil/chemistry , Taste/physiology , United States , Water/chemistry
14.
Sci Total Environ ; 662: 622-630, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30699383

ABSTRACT

The use of recycled water for agricultural irrigation comes with the concern of exposure to crops by contaminants of emerging concerns (CECs). The concentration of CECs in plant tissues will depend on uptake, translocation and metabolism in plants. However, relatively little is known about plant metabolism of CECs, particularly under chronic exposure conditions. In this study, metabolism of the pharmaceutical diazepam was investigated in Arabidopsis thaliana cells and cucumber (Cucumis sativus) and radish (Raphanus sativus) seedlings grown in hydroponic solution following acute (7 d)/high concentration (1 mg L-1), and chronic (28 d)/low concentration (1 µg L-1) exposures. Liquid chromatography paired with mass spectrometry, 14C tracing, and enzyme extractions, were used to characterize the metabolic phases. The three major metabolites of diazepam - nordiazepam, temazepam and oxazepam - were detected as Phase I metabolites, with the longevity corresponding to that of human metabolism. Nordiazepam was the most prevalent metabolite at the end of the 5 d incubation in A. thaliana cells and 7 d, 28 d seedling cultivations. At the end of 7 d cultivation, non-extractable residues (Phase III) in radish and cucumber seedlings accounted for 14% and 33% of the added 14C-diazepam, respectively. By the end of 28 d incubation, the non-extractable radioactivity fraction further increased to 47% and 61%, indicating Phase III metabolism as an important destination for diazepam. Significant changes to glycosyltransferase activity were detected in both cucumber and radish seedlings exposed to diazepam. Findings of this study highlight the need to consider the formation of bioactive transformation intermediates and different phases of metabolism to achieve a comprehensive understanding of risks of CECs in agroecosystems.


Subject(s)
Arabidopsis/metabolism , Crop Production , Cucumis sativus/metabolism , Diazepam/metabolism , Fertilizers/analysis , Raphanus/metabolism , Water Pollutants, Chemical/metabolism , Cells, Cultured , Hydroponics , Seedlings/metabolism
15.
Sci Total Environ ; 649: 431-439, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30176456

ABSTRACT

Many pharmaceutical and personal care products (PPCPs) enter agroecosystems during reuse of treated wastewater and biosolids, presenting potential impacts on plant development. Here, acetaminophen, one of the most-used pharmaceuticals, was used to explore roles of glutathione (GSH) conjugation in its biotransformation in crop plants. Acetaminophen was taken up by plants, and conjugated quickly with GSH. After exposure to 5 mg L-1 acetaminophen for 144 h, GSH-acetaminophen conjugates were 15.2 ±â€¯1.3 nmol g-1 and 1.2 ±â€¯0.1 nmol g-1 in cucumber roots and leaves, respectively. Glutathione-acetaminophen was also observed in common bean, alfalfa, tomato, and wheat. Inhibition of cytochrome P450 decreased GSH conjugation. Moreover, the GSH conjugate was found to further convert to cysteine and N-acetylcysteine conjugates. Glutathione S-transferase activity was significantly elevated after exposure to acetaminophen, while levels of GSH decreased by 55.4% in roots after 48 h, followed by a gradual recovery thereafter. Enzymes involved in GSH synthesis, regeneration and transport were consistently induced to maintain the GSH homeostasis. Therefore, GST-mediated conjugation likely played a crucial role in minimizing phytotoxicity of acetaminophen and other PPCPs in plants.


Subject(s)
Acetaminophen/metabolism , Cucumis sativus/metabolism , Glutathione Transferase/metabolism , Plant Proteins/metabolism , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism , Analgesics, Non-Narcotic/metabolism , Antipyretics/metabolism , Biodegradation, Environmental , Cucumis sativus/enzymology , Inactivation, Metabolic
16.
Environ Monit Assess ; 190(3): 125, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29423658

ABSTRACT

Many countries are utilizing reclaimed wastewater for agriculture as water demands due to drought, rising temperatures, and expanding human populations. Unfortunately, wastewater often contains biologically active, pseudopersistant pharmaceuticals, even after treatment. Runoff from agriculture and effluent from wastewater treatment plants also contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on an agricultural pest, the aphid Myzus persicae (Sulzer, Hemiptera: Aphididae). Second instar nymphs were transferred to bell peppers (Capsicum annuum) that were grown hydroponically. Treatment plants were spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations found in reclaimed wastewater. M. persicae displayed no differences in population growth or microbial community differences due to chemical treatments. Plants, however, displayed significant growth reduction in antibiotic and mixture treatments, specifically in wet root masses. Antibiotic treatment masses were significantly reduced in the total and root wet masses. Mixture treatments displayed an overall reduction in plant root wet mass. Our results suggest that the use of reclaimed wastewater for crop irrigation would not affect aphid populations, but could hinder or delay crop production.


Subject(s)
Aphids/drug effects , Capsicum/physiology , Environmental Monitoring , Animals , Humans , Plant Roots , Temperature
17.
Environ Pollut ; 234: 39-47, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29156440

ABSTRACT

Contamination of agricultural soils by pharmaceutical and personal care products (PPCPs) resulting from the application of treated wastewater, biosolids and animal wastes constitutes a potential environmental risk in many countries. To date a handful of studies have considered the phytotoxicity of individual PPCPs in crop plants, however, little is known about the effect of PPCPs as mixtures at environmentally relevant levels. This study investigated the uptake and transport, physiological responses and detoxification of a mixture of 17 PPCPs in cucumber seedlings. All PPCPs were detected at higher concentrations in roots compared to leaves, with root activity inhibited in a dose-dependent manner. At 5-50 µg/L, the mature leaves exhibited burnt edges as well as a reduction in photosynthesis pigments. Reactive oxygen species (ROS) production and lipid peroxidation increased with increasing PPCP concentrations; and their contents were greater in roots than in leaves for all PPCP treatments. Enzymes involved in various functions, including oxidative stress (superoxide dismutase and ascorbate peroxidase) and xenobiotic metabolism (peroxidase and glutathione S-transferase), were elevated to different levels depending on the PPCP concentration. Glutathione content gradually increased in leaves, while a maxima occurred at 0.5 µg L-1 PPCPs in roots, followed by a decrease thereafter. This study illustrated the complexity of phytotoxicity after exposure to PPCP mixtures, and provided insights into the molecular mechanisms likely responsible for the detoxification of PPCPs in higher plants.


Subject(s)
Cosmetics/toxicity , Cucumis sativus/drug effects , Drug-Related Side Effects and Adverse Reactions , Soil Pollutants/toxicity , Cucumis sativus/metabolism , Glutathione/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Oxidative Stress/drug effects , Peroxidases/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Superoxide Dismutase/metabolism
18.
Proc Natl Acad Sci U S A ; 114(46): E9923-E9931, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087336

ABSTRACT

Many countries are utilizing reclaimed wastewater for agriculture because drought, rising temperatures, and expanding human populations are increasing water demands. Unfortunately, wastewater often contains biologically active, pseudopersistent pharmaceuticals, even after treatment. Runoff from farms and output from wastewater treatment plants also contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on an agricultural pest, Trichoplusia ni (Lepidoptera: Noctuidae). Larvae were reared on artificial diets spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations. Trichoplusia ni showed increased developmental time and mortality when reared on artificial diets containing antibiotics, hormones, or a mixture of contaminants. Mortality was also increased when T. ni were reared on tomatoes grown hydroponically with the same concentrations of antibiotics. The antibiotic-treated plants translocated ciprofloxacin through their tissues to roots, shoots, and leaves. Microbial communities of T. ni changed substantially between developmental stages and when exposed to CECs in their diets. Our results suggest that use of reclaimed wastewater for irrigation of crops can affect the developmental biology and microbial communities of an insect of agricultural importance.


Subject(s)
Agriculture , Crops, Agricultural , Lepidoptera/drug effects , Lepidoptera/growth & development , Wastewater/chemistry , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/chemistry , Animals , Anti-Bacterial Agents/analysis , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Ciprofloxacin/metabolism , DNA, Bacterial , Diet , Environmental Monitoring , Hormones/analysis , Humans , Larva/drug effects , Larva/growth & development , Lepidoptera/microbiology , Solanum lycopersicum/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/physiology , Microbial Consortia/drug effects , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Shoots/chemistry , RNA, Ribosomal, 16S/genetics
19.
Sci Rep ; 7(1): 8165, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811598

ABSTRACT

Drought, rising temperatures, and expanding human populations are increasing water demands. Many countries are extending potable water supplies by irrigating crops with wastewater. Unfortunately, wastewater contains biologically active, long-lived pharmaceuticals, even after treatment. Run-off from farms and wastewater treatment plant overflows contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on a cosmopolitan saprophagous insect, Megaselia scalaris (Diptera: Phoridae). Larvae were reared on artificial diets spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations. Female flies showed no oviposition preference for treated or untreated diets. Larvae exposed to caffeine in diets showed increased mortality, and larvae fed antibiotics and hormones showed signs of slowed development, especially in females. The normal sex ratio observed in M. scalaris from control diets was affected by exposure to caffeine and pharmaceutical mixture treatments. There was an overall effect of treatment on the flies' microbial communities; notably, caffeine fed insects displayed higher microbial variability. Eight bacterial families accounted for approximately 95% of the total microbes in diet and insects. Our results suggest that CECs at environmentally relevant concentrations can affect the biology and microbial communities of an insect of ecological and medical importance.


Subject(s)
Diptera/microbiology , Microbiota , Wastewater/analysis , Water Pollution , Animals , Bacteria/classification , Bacteria/genetics , Diptera/growth & development , Female , Larva , Life Cycle Stages , Male , Water Pollution/adverse effects
20.
Environ Pollut ; 220(Pt A): 234-241, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27692883

ABSTRACT

The selenium contamination event that occurred at Kesterson Reservoir (Merced Co., CA) during the 1970-80s is a frequently cited example for the negative effects of contamination on wildlife. Despite the importance of arthropods for ecosystem services and functioning, relatively little information is available as to the impacts of pollution on arthropod community dynamics. We conducted surveys of the arthropod community present at Kesterson Reservoir to assess the impacts of selenium contamination on arthropod diversity, with a focus on ant species richness, composition and density. Trophic groups were compared to determine which arthropods were potentially receiving the greatest selenium exposure. Plant samples were analyzed to determine the selenium content by site and by location within plant. Soil concentrations varied across the study sites, but not across habitat types. Topsoil contained higher levels of selenium compared to core samples. Plants contained similar concentrations of selenium in their leaves, stems and flowers, but flowers contained the greatest range of concentrations. Individuals within the detritivores/decomposers and predators accumulated the greatest concentrations of selenium, whereas nectarivores contained the lowest concentrations. Species composition differed across the sites: Dorymyrmex bicolor was located only at the site containing the greatest soil selenium concentration, but Solenopsis xyloni was found at most sites and was predominant at six of the sites. Selenium concentrations in ants varied by species and collection sites. Nest density was also found to differ across sites, but was not related to soil selenium or any of the habitat variables measured in our study. Selenium was not found to impact species richness, but was a significant variable for the occurrence of two out of the eight native species identified.


Subject(s)
Ants/physiology , Selenium/toxicity , Soil Pollutants/toxicity , Animals , Ants/drug effects , Arthropods/physiology , Ecosystem , Environmental Monitoring , Plants , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...