Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 6(6): 5234-41, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22545808

ABSTRACT

Hexagonal boron nitride (h-BN) is a promising dielectric material for graphene-based electronic devices. Here we investigate the potential of h-BN gate dielectrics, grown by chemical vapor deposition (CVD), for integration with quasi-freestanding epitaxial graphene (QFEG). We discuss the large scale growth of h-BN on copper foil via a catalytic thermal CVD process and the subsequent transfer of h-BN to a 75 mm QFEG wafer. X-ray photoelectron spectroscopy (XPS) measurements confirm the absence of h-BN/graphitic domains and indicate that the film is chemically stable throughout the transfer process, while Raman spectroscopy indicates a 42% relaxation of compressive stress following removal of the copper substrate and subsequent transfer of h-BN to QFEG. Despite stress-induced wrinkling observed in the films, Hall effect measurements show little degradation (<10%) in carrier mobility for h-BN coated QFEG. Temperature dependent Hall measurements indicate little contribution from remote surface optical phonon scattering and suggest that, compared to HfO(2) based dielectrics, h-BN can be an excellent material for preserving electrical transport properties. Graphene transistors utilizing h-BN gates exhibit peak intrinsic cutoff frequencies >30 GHz (2.4× that of HfO(2)-based devices).


Subject(s)
Boron Compounds/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Crystallization/methods , Elastic Modulus , Macromolecular Substances/chemistry , Magnetic Fields , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
2.
Nano Lett ; 11(9): 3601-7, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21805989

ABSTRACT

We explore the effect of high-κ dielectric seed layer and overlayer on carrier transport in epitaxial graphene. We introduce a novel seeding technique for depositing dielectrics by atomic layer deposition that utilizes direct deposition of high-κ seed layers and can lead to an increase in Hall mobility up to 70% from as-grown. Additionally, high-κ seeded dielectrics are shown to produce superior transistor performance relative to low-κ seeded dielectrics and the presence of heterogeneous seed/overlayer structures is found to be detrimental to transistor performance, reducing effective mobility by 30-40%. The direct deposition of high-purity oxide seed represents the first robust method for the deposition of uniform atomic layer deposited dielectrics on epitaxial graphene that improves carrier transport.

3.
Nano Lett ; 11(9): 3875-80, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21805993

ABSTRACT

We directly demonstrate the importance of buffer elimination at the graphene/SiC(0001) interface for high frequency applications. Upon successful buffer elimination, carrier mobility increases from an average of 800 cm(2)/(V s) to >2000 cm(2)/(V s). Additionally, graphene transistor current saturation increases from 750 to >1300 mA/mm, and transconductance improves from 175 mS/mm to >400 mS. Finally, we report a 10× improvement in the extrinsic current gain response of graphene transistors with optimal extrinsic current-gain cutoff frequencies of 24 GHz.

4.
ACS Nano ; 4(5): 2667-72, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20415460

ABSTRACT

We present the integration of epitaxial graphene with thin film dielectric materials for the purpose of graphene transistor development. The impact on epitaxial graphene structural and electronic properties following deposition of Al(2)O(3), HfO(2), TiO(2), and Ta(2)O(5) varies based on the choice of dielectric and deposition parameters. Each dielectric film requires the use of a nucleation layer to ensure uniform, continuous coverage on the graphene surface. Graphene quality degrades most severely following deposition of Ta(2)O(5), while the deposition if TiO(2) appears to improve the graphene carrier mobility. Finally, we discuss the potential of dielectric stack engineering for improved transistor performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...