Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(36): 12789-12795, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37615965

ABSTRACT

Despite the increasing number of spin-crossover FeII-based cages, the interplay between ligand modifications (e.g. coordination motif substituents and linker) is not well-understood in these multinuclear systems, limiting rational design. Here, we report a family of FeII4L6 spin-crossover cages based on 2,2'-pyridylbenzimidazoles where subtle ligand modifications lowered the spin crossover temperature in CD3CN by up to 186 K. Comparing pairs of cages, CH3 substituents on either the coordination motif or phenylene linker lowered the spin-crossover temperature by 48 K, 91 K or 186 K, attributed to electronic effects, steric effects and a combination of both, respectively. The understanding of the interplay between ligand modifications gained from this study could be harnessed on the path towards the improved rational design of spin-crossover cages.

2.
Angew Chem Int Ed Engl ; 59(43): 19344-19351, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33448544

ABSTRACT

The large paramagnetic shifts and short relaxation times resulting from the presence of a paramagnetic centre complicate NMR data acquisition and interpretation in solution. As a result, NMR analysis of paramagnetic complexes is limited in comparison to diamagnetic compounds and often relies on theoretical models. We report a toolbox of 1D (1H, proton-coupled 13C, selective 1H-decoupling 13C, steady-state NOE) and 2D (COSY, NOESY, HMQC) paramagnetic NMR methods that enables unprecedented structural characterisation and in some cases, provides more structural information than would be observable for a diamagnetic analogue. We demonstrate the toolbox's broad versatility for fields from coordination chemistry and spin-crossover complexes to supramolecular chemistry through the characterisation of CoII and high-spin FeII mononuclear complexes as well as a Co4L6 cage.

SELECTION OF CITATIONS
SEARCH DETAIL
...