Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 13(6): 1277-1287, 2019 12.
Article in English | MEDLINE | ID: mdl-31715569

ABSTRACT

This paper presents an autonomous multi-input (multi-beam) reconfigurable power-management chip for optimal energy harvesting from weak multi-axial human motion using a multi-beam piezoelectric energy harvester (PEH). The proposed chip adaptively operates in either voltage-mode or synchronous-electrical-charge-extraction-mode (VM-SECE) to improve overall efficiency, extract maximum energy regardless of the PEH beams' impedance/voltage/frequency variations, and protect the chip against large inputs, eliminating the need for high-voltage processes. It can simultaneously harvest energy from up to 6 beams using only one shared off-chip inductor. It uses an active negative voltage converter to extend the input-voltage range to as low as 35 mV. In addition, an active voltage doubler with a small footprint is implemented for faster cold start. A prototype VM-SECE chip was fabricated in a 0.35-µm 2P4M standard CMOS process occupying 1.9 mm2 active area. To fully characterize the chip performance, it was tested with both a commercial single-beam PEH and a custom-made PEH with five mechanically plucked thin-film beams. With the commercial PEH, compared to an on-chip full-wave active rectifier (FAR) with 95.6% efficiency, the VM-SECE chip harvested 3.28x more power for shock inputs at 1 Hz frequency and 4.39 g acceleration. With the custom 5-beam PEH for a pseudo-walking condition, compared to the on-chip FAR, the VM-SECE chip harvested 1.59x and 2.38x more power for 1-and 5-beam operations, respectively.


Subject(s)
Movement/physiology , Wearable Electronic Devices , Electricity , Equipment Design , Humans , Semiconductors
2.
Sensors (Basel) ; 19(17)2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31480388

ABSTRACT

This paper investigates the lateral pull-in effect of an in-plane overlap-varying transducer. The instability is induced by the translational and rotational displacements. Based on the principle of virtual work, the equilibrium conditions of force and moment in lateral directions are derived. The analytical solutions of the critical voltage, at which the pull-in phenomenon occurs, are developed when considering only the translational stiffness or only the rotational stiffness of the mechanical spring. The critical voltage in a general case is numerically determined by using nonlinear optimization techniques, taking into account the combined effect of translation and rotation. The influences of possible translational offsets and angular deviations to the critical voltage are modeled and numerically analyzed. The investigation is then expanded for the first time to anti-phase operation mode and Bennet's doubler configuration of the two transducers.

3.
Materials (Basel) ; 12(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744044

ABSTRACT

As the size of biomedical implants and wearable devices becomes smaller, the need for methods to deliver power at higher power densities is growing. The most common method to wirelessly deliver power, inductively coupled coils, suffers from poor power density for very small-sized receiving coils. An alternative strategy is to transmit power wirelessly to magnetoelectric (ME) or mechano-magnetoelectric (MME) receivers, which can operate efficiently at much smaller sizes for a given frequency. This work studies the effectiveness of ME and MME transducers as wireless power receivers for biomedical implants of very small (<2 mm³) size. The comparative study clearly demonstrates that under existing safety standards, the ME architecture is able to generate a significantly higher power density than the MME architecture. Analytical models for both types of transducers are developed and validated using centimeter scale devices. The Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) standards were applied to the lumped elements models which were then used to optimize device dimensions within a 2 mm³ volume. An optimized ME device can produce 21.3 mW/mm³ and 31.3 W/mm³ under the IEEE and ICNIRP standards, respectively, which are extremely attractive for a wide range of biomedical implants and wearable devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...