Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PPAR Res ; 2012: 604216, 2012.
Article in English | MEDLINE | ID: mdl-22829803

ABSTRACT

Prenatally administered rosiglitazone (RGZ) is effective in enhancing lung maturity; however, its long-term safety remains unknown. This study aimed to determine the effects of prenatally administered RGZ on the metabolic phenotype of adult rats. Methods. Pregnant Sprague-Dawley rat dams were administered either placebo or RGZ at embryonic days 18 and 19. Between 12 and 20 weeks of age, the rats underwent glucose and insulin tolerance tests and de novo fatty acid synthesis assays. The lungs, liver, skeletal muscle, and fat tissue were processed by Western hybridization for peroxisome proliferator-activated receptor (PPAR)γ, adipose differentiation-related protein (ADRP), and surfactant proteins B (SPB) and C (SPC). Plasma was assayed for triglycerides, cholesterol, insulin, glucagon, and troponin-I levels. Lungs were also morphometrically analyzed. Results. Insulin and glucose challenges, de novo fatty acid synthesis, and all serum assays revealed no differences among all groups. Western hybridization for PPARγ, ADRP, SPB, and SPC in lung, liver, muscle, and fat tissue showed equal levels. Histologic analyses showed a similar number of alveoli and septal thickness in all experimental groups. Conclusions. When administered prenatally, RGZ does not affect long-term fetal programming and may be safe for enhancing fetal lung maturation.

2.
Neonatology ; 101(3): 217-24, 2012.
Article in English | MEDLINE | ID: mdl-22076469

ABSTRACT

BACKGROUND: Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor-γ (PPARγ) agonist, significantly enhances lung maturation without affecting blood biochemical and metabolic profiles in the newborn period. However, whether this exposure to RGZ in neonatal life alters the adult metabolic phenotype is not known. OBJECTIVE: To determine the effects of early postnatal administration of RGZ on the young adult metabolic phenotype. METHODS: Newborn rat pups were administered either saline or RGZ for the first 7 days of life. At 11-14 weeks, glucose and insulin tolerance tests and deuterium labeling were performed. Blood and tissues were analyzed for various metabolic parameters. RESULTS: Overall, there was no effect of early postnatal RGZ administration on young adult body weight, glucose and insulin tolerance, plasma cholesterol and triglyceride profiles, insulin, glucagon, cardiac troponin, fatty acid synthesis, or tissue adipogenic differentiation. CONCLUSIONS: Treatment with RGZ in early neonatal life does not alter later developmental metabolic programming or lead to an altered metabolic phenotype in the young adult, further re-enforcing the safety of PPARγ agonists as a novel lung-protective strategy.


Subject(s)
Hypoglycemic Agents/pharmacology , Lung/drug effects , Metabolic Networks and Pathways/drug effects , Thiazolidinediones/pharmacology , Animals , Animals, Newborn , Biomarkers/metabolism , Clinical Chemistry Tests , Disease Models, Animal , Glucose Tolerance Test , Insulin/blood , Insulin Resistance , Lung/metabolism , Lung/pathology , PPAR gamma/agonists , Phenotype , Rats , Rosiglitazone
SELECTION OF CITATIONS
SEARCH DETAIL
...