Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 8(2): e2300427, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37712209

ABSTRACT

Coupling the hydrogen evolution reaction with plastic waste photoreforming provides a synergistic path for simultaneous production of green hydrogen and recycling of post-consumer products, two major enablers for establishment of a circular economy. Graphitic carbon nitride (g-C3 N4 ) is a promising photocatalyst due to its suitable optoelectronic and physicochemical properties, and inexpensive fabrication. Herein, a mechanistic investigation of the structure-activity relationship of g-C3 N4 for poly(ethylene terephthalate) (PET) photoreforming is reported by carefully controlling its fabrication from a subset of earth-abundant precursors, such as dicyandiamide, melamine, urea, and thiourea. These findings reveal that melamine-derived g-C3 N4 with 3 wt.% Pt has significantly higher performance than alternative derivations, achieving a maximum hydrogen evolution rate of 7.33 mmolH2  gcat -1  h-1 , and simultaneously photoconverting PET into valuable organic products including formate, glyoxal, and acetate, with excellent stability for over 30 h of continuous production. This is attributed to the higher crystallinity and associated chemical resistance of melamine-derived g-C3 N4 , playing a major role in stabilization of its morphology and surface properties. These new insights on the role of precursors and structural properties in dictating the photoactivity of g-C3 N4 set the foundation for the further development of photocatalytic processes for combined green hydrogen production and plastic waste reforming.

2.
Small ; : e2304650, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863809

ABSTRACT

Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2 O3 , SiO2 , TiO2 , SnO2 , and HfO2 , prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3 O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3 O4 following the order of HfO2 > SnO2 > TiO2 > Al2 O3 , SiO2 . An optimal HfO2 layer thickness of 12 nm enhances the Co3 O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2 SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2 , revealing a major role of the HfO2 |Co3 O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.

3.
ACS Nano ; 14(11): 14579-14604, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33155803

ABSTRACT

Two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors exhibit many important structural and optoelectronic properties, such as strong light-matter interactions, direct bandgaps tunable from visible to near-infrared regions, flexibility and atomic thickness, quantum-confinement effects, valley polarization possibilities, and so on. Therefore, they are regarded as a very promising class of materials for next-generation state-of-the-art nano/micro optoelectronic devices. To explore different applications and device structures based on 2D TMDs, intrinsic material properties, their relationships, and evolutions with fabrication parameters need to be deeply understood, very often through a combination of various characterization techniques. Among them, steady-state photoluminescence (PL) spectroscopy has been extensively employed. This class of techniques is fast, contactless, and nondestructive and can provide very high spatial resolution. Therefore, it can be used to obtain optoelectronic properties from samples of various sizes (from microns to centimeters) during the fabrication process without complex sample preparation. In this article, the mechanism and applications of steady-state PL spectroscopy in 2D TMDs are reviewed. The first part of this review details the physics of PL phenomena in semiconductors and common techniques to acquire and analyze PL spectra. The second part introduces various applications of PL spectroscopy in 2D TMDs. Finally, a broader perspective is discussed to highlight some limitations and untapped opportunities of PL spectroscopy in characterizing 2D TMDs.

4.
ACS Nano ; 14(6): 7444-7453, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32401484

ABSTRACT

Organic-inorganic (O-I) heterostructures, consisting of atomically thin inorganic semiconductors and organic molecules, present synergistic and enhanced optoelectronic properties with a high tunability. Here, we develop a class of air-stable vertical O-I heterostructures comprising a monolayer of transition-metal dichalcogenides (TMDs), including WS2, WSe2, and MoSe2, on top of tetraphenylethylene (TPE) core-based aggregation-induced emission (AIE) molecular rotors. The created O-I heterostructures yields a photoluminescence (PL) enhancement of up to ∼950%, ∼500%, and ∼330% in the top monolayer WS2, MoSe2, and WSe2 as compared to PL in their pristine monolayers, respectively. The strong PL enhancement is mainly attributed to the efficient photogenerated carrier process in the AIE luminogens (courtesy of their restricted intermolecular motions in the solid state) and the charge-transfer process in the created type I O-I heterostructures. Moreover, we observe an improvement in photovoltaic properties of the TMDs in the heterostructures including the quasi-Fermi level splitting, minority carrier lifetime, and light absorption. This work presents an inspiring example of combining stable, highly luminescent AIE-based molecules, with rich photochemistry and versatile applications, with atomically thin inorganic semiconductors for multifunctional and efficient optoelectronic devices.

5.
Sci Rep ; 9(1): 10423, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320716

ABSTRACT

We develop a photoluminescence-based technique to determine dopant profiles of localized boron-diffused regions in silicon wafers and solar cell precursors employing two excitation wavelengths. The technique utilizes a strong dependence of room-temperature photoluminescence spectra on dopant profiles of diffused layers, courtesy of bandgap narrowing effects in heavily-doped silicon, and different penetration depths of the two excitation wavelengths in silicon. It is fast, contactless, and nondestructive. The measurements are performed at room temperature with micron-scale spatial resolution. We apply the technique to reconstruct dopant profiles of a large-area (1 cm × 1 cm) boron-diffused sample and heavily-doped regions (30 µm in diameter) of passivated-emitter rear localized-diffused solar cell precursors. The reconstructed profiles are confirmed with the well-established electrochemical capacitance voltage technique. The developed technique could be useful for determining boron dopant profiles in small doped features employed in both photovoltaic and microelectronic applications.

6.
Adv Mater ; 31(25): e1900522, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31062437

ABSTRACT

One of the most fundamental parameters of any photovoltaic material is its quasi-Fermi level splitting (∆µ) under illumination. This quantity represents the maximum open-circuit voltage (Voc ) that a solar cell fabricated from that material can achieve. Herein, a contactless, nondestructive method to quantify this parameter for atomically thin 2D transition metal dichalcogenides (TMDs) is reported. The technique is applied to quantify the upper limits of Voc that can possibly be achieved from monolayer WS2 , MoS2 , WSe2 , and MoSe2 -based solar cells, and they are compared with state-of-the-art perovskites. These results show that Voc values of ≈1.4, ≈1.12, ≈1.06, and ≈0.93 V can be potentially achieved from solar cells fabricated from WS2 , MoS2 , WSe2 , and MoSe2 monolayers at 1 Sun illumination, respectively. It is also observed that ∆µ is inhomogeneous across different regions of these monolayers. Moreover, it is attempted to engineer the observed ∆µ heterogeneity by electrically gating the TMD monolayers in a metal-oxide-semiconductor structure that effectively changes the doping level of the monolayers electrostatically and improves their ∆µ heterogeneity. The values of ∆µ determined from this work reveal the potential of atomically thin TMDs for high-voltage, ultralight, flexible, and eye-transparent future solar cells.

7.
ACS Appl Mater Interfaces ; 11(5): 5554-5560, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30652477

ABSTRACT

We characterize and discuss the impact of hydrogenation on the performance of phosphorus-doped polycrystalline silicon (poly-Si) films for passivating contact solar cells. Combining various characterization techniques including transmission electron microscopy, energy-dispersive X-ray spectroscopy, low-temperature photoluminescence spectroscopy, quasi-steady-state photoconductance, and Fourier-transform infrared spectroscopy, we demonstrate that the hydrogen content inside the doped poly-Si layers can be manipulated to improve the quality of the passivating contact structures. After the hydrogenation process of poly-Si layers fabricated under different conditions, the effective lifetime and the implied open circuit voltage are improved for all investigated samples (up to 4.75 ms and 728 mV on 1 Ω cm n-type Si substrates). Notably, samples with very low initial passivation qualities show a dramatic improvement from 350 µs to 2.7 ms and from 668 to 722 mV.

SELECTION OF CITATIONS
SEARCH DETAIL
...