Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402011, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852174

ABSTRACT

The wavelength-by-wavelength resolved photoreactivity of two photo-caged carboxylic acids, i. e. 7-(diethylamino)-coumarin- and 3-perylene-modified substrates, is investigated via photochemical action plots. The observed wavelength-dependent reactivity of the chromophores is contrasted with their absorption profile. The photochemical action plots reveal a remarkable mismatch between the maximum reactivity and the absorbance. Through the action plot data, the study is able to uncover photochemical reactivity maxima at longer and shorter wavelengths, where the molar absorptivity of the chromophores is strongly reduced. Finally, the laser experiments are translated to light emitting diode (LED) irradiation and show efficient visible-light-induced release in a near fully wavelength-orthogonal, sequence-independent fashion (λLED1 = 405 nm, λLED2 = 505 nm) with both chromophores in the same reaction solution. The herein pioneered wavelength orthogonal release systems open an avenue for releasing two different molecular cargos with visible light in a fully orthogonal fashion.

2.
Nat Commun ; 14(1): 8298, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097621

ABSTRACT

Thioindigos are visible light responsive photoswitches with excellent spatial control over the conformational change between their trans- and cis- isomers. However, they possess limited solubility in all conventional organic solvents and polymers, hindering their application in soft matter materials. Herein, we introduce a strategy for the covalent insertion of thioindigo units into polymer main chains, enabling thioindigos to function within crosslinked polymeric hydrogels. We overcome their solubility issue by developing a thioindigo bismethacrylate linker able to undergo radical initiated thiol-ene reaction for step-growth polymerization, generating indigo-containing polymers. The optimal wavelength for the reversible trans-/cis- isomerisation of thioindigo was elucidated by constructing a detailed photochemical action plot of their switching efficiencies at a wide range of monochromatic wavelengths. Critically, indigo-containing polymers display significant photoswitching of the materials' optical and physical properties in organic solvents and water. Furthermore, the photoswitching of thioindigo within crosslinked structures enables visible light induced modulation of the hydrogel stiffness. Both the thioindigo-containing hydrogels and photoswitching processes are non-toxic to cells, thus offering opportunities for advanced applications in soft matter materials and biology-related research.

3.
Chem Commun (Camb) ; 59(80): 11959-11962, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37724042

ABSTRACT

We map the photochemical reactivity of two chromophores-a pyrene-chalcone and a methylene blue protected amine-from a one-pot reaction mixture based on their dynamic absorptivity changes upon light exposure, constructing a dual action plot. We employ the action plot data to determine a pathlength-independent λ-orthogonality window, allowing the orthogonal folding of distinct polymer chains into single chain nano-particles (SCNPs) from the same reaction mixture.

4.
Angew Chem Int Ed Engl ; 62(37): e202309259, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37485591

ABSTRACT

We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax =415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH ). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.

5.
Chem Commun (Camb) ; 59(27): 4012-4015, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36920883

ABSTRACT

We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.


Subject(s)
DNA , Light , Humans , HeLa Cells , Ultraviolet Rays
6.
Chem Sci ; 13(45): 13280-13290, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36507164

ABSTRACT

Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.

7.
Chem Commun (Camb) ; 58(93): 12975-12978, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36326031

ABSTRACT

We pioneer the photochemical generation of single chain nanoparticles (SCNPs) at the to-date mildest reported wavelength of 625 nm by exploiting the photochemical uncaging of methylene blue protected amines. The protected amines are tethered to polymers prepared via reversible addition-fragmentation chain transfer (RAFT) polymerisation, and subsequently undergo intrachain crosslinking by amide formation.


Subject(s)
Nanoparticles , Polymers , Polymerization , Light , Amines
8.
Adv Mater ; 34(39): e2203474, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35918791

ABSTRACT

The additive manufacturing technique direct laser writing (DLW), also known as two-photon laser lithography, is becoming increasingly established as a technique capable of fabricating functional 3D microstructures. Recently, there has been an increasing effort to impart microstructures fabricated using DLW with advanced functionalities by introducing responsive chemical entities into the underpinning photoresists. Herein, a novel photoresist based on the photochemistry of the bimane group is introduced that can be degraded upon exposure to very mild conditions, requiring only water and visible light (λmax  = 415-435 nm) irradiation. The degradation of the microstructures is tracked and quantified using AFM measurements of their height. The influence of the writing parameters as well as the degradation conditions is investigated, unambiguously evidencing effective visible light degradation in aqueous environments. Finally, the utility of the photodegradable resist system is demonstrated by incorporating it into multimaterial 3D microstructures, serving as a model for future applications.

9.
Transl Oncol ; 24: 101477, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35905640

ABSTRACT

Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clinical impact on the treatment of hematological malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated. CAR-T cells targeting TAG-72, encapsulated in these microgels possessed high viability (> 87%) after 7 days, equivalent to those grown under normal expansion conditions, with retention of the T cell phenotype and functionality. Microgel recovered CAR-T cells demonstrated potent on-target cytotoxicity against human ovarian cancer in vitro and on three-dimensional tumor spheroids, by completely eliminating tumor cells. The gelatin-based micro-hydrogels have the potential to serve as carrier systems to augment CAR-T immunotherapeutic treatment of solid tumors.

10.
Nat Commun ; 13(1): 2943, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35618722

ABSTRACT

We introduce a photochemical bond forming system, where two colours of light are required to trigger covalent bond formation. Specifically, we exploit a visible light cis/trans isomerization of chlorinated azobenzene, which can only undergo reaction with a photochemically generated ketene in its cis state. Detailed photophysical mapping of the reaction efficiencies at a wide range of monochromatic wavelengths revealed the optimum irradiation conditions. Subsequent small molecule and polymer ligation experiments illustrated that only the application of both colours of light affords the reaction product. We further extend the functionality to a photo reversible ketene moiety and translate the concept into material science. The presented reaction system holds promise to be employed as a two-colour resist.

11.
Chem Commun (Camb) ; 58(44): 6397-6400, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35543266

ABSTRACT

We introduce a visible light-induced Staudinger-Bertozzi ligation via photo-uncaging of a triphenylphosphine moiety with a photolabile coumarin derivative. Our action plot study examines the conversion as the function of wavelength, revealing that the uncaging process and Staudinger reaction can be triggered by green light (λ < 550 nm). We further demonstrate the applicability of our approach in materials science via endgroup modification of water soluble poly(ethylene glycol) and green light-induced patterning of a solid substrate.


Subject(s)
Azides , Water , Light , Polyethylene Glycols
12.
Chemistry ; 28(25): e202104466, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35213069

ABSTRACT

The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light-induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light-driven adaptation of 3D printed structures on the macro- and micro-scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non-conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non-fluorescent, and cell adhesive vs. cell repellent properties.


Subject(s)
Hydrogels , Polymers , Adhesives , Electric Conductivity , Hydrogels/chemistry , Photochemistry , Polymers/chemistry
13.
Angew Chem Int Ed Engl ; 61(15): e202113076, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35029002

ABSTRACT

Herein, we introduce the wavelength-orthogonal crosslinking of hydrogel networks using two red-shifted chromophores, i.e. acrylpyerene (AP, λactivation =410-490 nm) and styrylpyrido[2,3-b]pyrazine (SPP, λactivation =400-550 nm), able to undergo [2+2] photocycloaddition in the visible-light regime. The photoreactivity of the SPP moiety is pH-dependent, whereby an acidic environment inhibits the cycloaddition. By employing a spiropyran-based photoacid generator with suitable absorption wavelength, we are able to restrict the activation wavelength of the SPP moiety to the green light region (λactivation =520-550 nm), enabling wavelength-orthogonal activation of the AP group. Our wavelength-orthogonal photochemical system was successfully applied in the design of hydrogels whose stiffness can be tuned independently by either green or blue light.

14.
J Am Chem Soc ; 143(50): 21113-21126, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34859671

ABSTRACT

Predicting wavelength-dependent photochemical reactivity is challenging. Herein, we revive the well-established tool of measuring action spectra and adapt the technique to map wavelength-resolved covalent bond formation and cleavage in what we term "photochemical action plots". Underpinned by tunable lasers, which allow excitation of molecules with near-perfect wavelength precision, the photoinduced reactivity of several reaction classes have been mapped in detail. These include photoinduced cycloadditions and bond formation based on photochemically generated o-quinodimethanes and 1,3-dipoles such as nitrile imines as well as radical photoinitiator cleavage. Organized by reaction class, these data demonstrate that UV/vis spectra fail to act as a predictor for photochemical reactivity at a given wavelength in most of the examined reactions, with the photochemical reactivity being strongly red shifted in comparison to the absorption spectrum. We provide an encompassing perspective of the power of photochemical action plots for bond-forming reactions and their emerging applications in the design of wavelength-selective photoresists and photoresponsive soft-matter materials.

15.
Adv Mater ; 33(39): e2102184, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34365684

ABSTRACT

Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavelength-selective addressability of individual photoreactive units is subsequently translated into hydrogel design, enabling wavelength-dependent cleavage of the hydrogel networks on-demand. Critically, this platform technology allows for the fabrication of various hydrogels, whose mechanical properties can be fine-tuned using different colors of light to reach a predefined value, according to the chromophore ratios used. The softening is shown to influence the spreading of pre-osteoblastic cells adhering to the gels as a demonstration of their potential utility. Furthermore, the materials and photodegradation processes are non-toxic to cells, making this platform attractive for biomaterials engineering.


Subject(s)
Drug Carriers/chemistry , Hydrogels/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Adhesion/drug effects , Cell Line , Cell Survival/drug effects , Hydrogels/pharmacology , Light , Mice , Nitrobenzenes/chemistry , Polyethylene Glycols/chemistry
16.
Chem Commun (Camb) ; 57(67): 8328-8331, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34323263

ABSTRACT

We introduce a four component Passerini polymerization utilizing sterically bulky isocyanide monomers. Under typical Passerini conditions, bulky isocyanides do not react within standard Passerini reaction timescales (hours). We overcome this challenge via the unique physiochemical conditions present in a vortex fluidic device, reducing the reaction time to 2 h on average. Under these high-shear thin-film conditions, bulky isocyanides are readily incorporated into the multicomponent polymerization without the need of high-pressure or temperature. Finally, we demonstrate that the four component approach using functional cyclic anhydrides allows for post-polymerization modification.

17.
J Am Chem Soc ; 143(19): 7292-7297, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33955743

ABSTRACT

We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.

18.
Nano Lett ; 21(7): 3066-3074, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33820417

ABSTRACT

Residual microtumors following surgical resection are the major cause for lethal cancer recurrence. However, it remains challenging to completely eliminate these residual microtumors. Here, we report an integrated strategy for image-guided surgical resection of tumors and intraoperative surface-enhanced Raman spectroscopy (SERS) guided thermosurgical elimination of residual microtumors using a "three-in-one" theranostic nanoprobe, termed the Au nanostar-based photoacoustic (PA), SERS, and thermosurgical (starPART) probe. This starPART probe, comprising an Au nanostar core, a Raman molecule layer, and a silica outer layer, draws upon the significant advantages of PA imaging, SERS detection, and photothermal tumor ablation. These prominent features enable preoperative PA imaging for surgical resection of tumors and intraoperative SERS-guided thermosurgery for complete elimination of residual microtumors. In vivo experiments confirm complete eradication of microtumors without local recurrence and with a 100% tumor-free survivability. This work therefore offers a robust platform for real-time intraoperative eradication of residual microtumors with significant improvement of surgical outcomes.


Subject(s)
Breast Neoplasms , Spectrum Analysis, Raman , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Female , Gold , Humans , Silicon Dioxide
19.
Mater Sci Eng C Mater Biol Appl ; 121: 111828, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579468

ABSTRACT

Surface coatings are extensively applied on biomedical devices to provide protection against biofouling and infections. However, most surface coatings prevent both bacteria and cells interactions with the biomaterials, limiting their uses as implants. Furthermore, damage to the surface such as scratches and abrasions can happen during transport and clinical usage, resulting in the loss of antibacterial property. In this work, we introduce an efficient method to fabricate stable anti-infective and self-healable multilayer coatings on stainless steel surface via a three-step procedue. Firstly, modified polyethyleneimine (PEI) and poly(acrylic acid) (PAA), both contain pendant furan groups, were deposited on the surface using Layer-by-Layer (LbL) self-assembly technique. Secondly, the polymer layers were cross-linked, via Diels-Alder cycloaddition, using a bismaleimide poly(ethylene glycol) linker, to enhance the stability of the coatings. Thirdly, the Diels-Alder adduct was utilised in the thiol-ene click reaction for post-modification of the coatings, which allowed for the grafting of antimicrobial poly(hexamethylene biguanide) (PHMB) and ε-poly(lysine) (EPL). The resultant multilayer coatings not only exhibited rapid self-healing property, with complete scratch closure within 30 min, but also demonstrated effective antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In addition, biofouling of bovine serum albumin was found to be inhibited on the coated surfaces. Furthermore, these coatings showed no toxicity effect towards seeded osteoblastic cells (MC3T3-E1) and evidence of anti-inflamatory activity when tested against macrophage cell line U-937. Our coating method thus represents an effective strategy for the anti-infective protection of biomedical-devices having direct contact with tissues.


Subject(s)
Anti-Infective Agents , Biofouling , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Escherichia coli , Staphylococcus aureus , Surface Properties
20.
ACS Macro Lett ; 10(1): 78-83, 2021 01 19.
Article in English | MEDLINE | ID: mdl-35548995

ABSTRACT

Light-mediated polymer cross-linking is frequently employed for the preparation of hydrogels for biomedical applications. However, most photopolymerization processes require activation by UV light or short wavelength visible light, which are highly absorbed by skin and tissue, limiting their uses in transdermal initiation. Herein, we introduce red light-enabled oxime ligation by the in situ photogeneration of aldehydes, which rapidly react with hydroxylamines. We demonstrate efficient polymer cross-linking behind a dermal tissue model by red light initiation. Optimization of the photopolymerization conditions allows for 3D encapsulation of human foreskin fibroblasts with good cell viability postencapsulation.


Subject(s)
Hydrogels , Oximes , Cell Survival , Humans , Light , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...