Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4789, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970836

ABSTRACT

The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings.


Subject(s)
Ubiquitin , Ubiquitins , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitins/metabolism
2.
PLoS Pathog ; 16(6): e1008640, 2020 06.
Article in English | MEDLINE | ID: mdl-32569299

ABSTRACT

Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.


Subject(s)
Merozoites/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Ubiquitin/metabolism , Ubiquitination , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Ubiquitin/genetics
3.
Extremophiles ; 23(6): 649-657, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31332517

ABSTRACT

An ionic interaction that holds an α-helix and a ß-strand on which catalytic Asp and His residues are located, respectively, is conserved in a hyperthermophilic esterase EstE1 (optimum temperature 70 °C) and a mesophilic esterase rPPE (optimum temperature 50 °C). We investigated the role of an ionic interaction between E258 and R275 in EstE1 and that between E263 and R280 in rPPE in active-site stability of serine esterases adapted to different temperatures. Ala substitutions caused a 5-10 °C decrease in the optimum temperature of both EstE1 and rPPE mutants. Surprisingly, disruption of the ionic interaction caused larger effects on the conformational flexibility of EstE1 mutants despite their rigid structures, whereas the disruption had fewer effects on the thermal stability of EstE1 mutants at 60-70 °C, as the structure of EstE1 was adapted to high temperatures. In contrast, mesophilic rPPE mutants showed dramatic decreases in thermal stability at 40-50 °C, but less changes in conformational flexibility because of their inherently flexible structures. The results of this study suggest that the ionic interaction between the α-helix with catalytic Asp and the ß-strand with catalytic His plays an important role in the active-site conformation of EstE1 and rPPE, with larger effects on the conformational flexibility of hyperthermophilic EstE1 and the thermal stability of mesophilic rPPE.


Subject(s)
Esterases , Protein Structure, Secondary , Pseudomonas , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Esterases/chemistry , Esterases/genetics , Pseudomonas/enzymology , Pseudomonas/genetics
4.
Biochemistry ; 55(25): 3542-9, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27259687

ABSTRACT

Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes.


Subject(s)
Bacterial Proteins/chemistry , Esterases/chemistry , Mutant Proteins/chemistry , Pseudomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Catalysis , Catalytic Domain , Cold Temperature , Enzyme Stability , Esterases/genetics , Esterases/metabolism , Hydrogen Bonding , Kinetics , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation/genetics , Sequence Homology, Amino Acid
5.
Extremophiles ; 20(2): 187-93, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26838013

ABSTRACT

An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.


Subject(s)
Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Catalytic Domain , Conserved Sequence , Esterases/chemistry , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enzyme Stability , Esterases/genetics , Esterases/metabolism , Hot Temperature , Tyrosine/chemistry , Tyrosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...