Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897812

ABSTRACT

The high mortality rate caused by atherosclerosis makes it necessary to constantly search for new and better treatments. In previous reports, chemically modified carbon-coated iron nanoparticles (Fe@C NPs) have been demonstrated a high biocompatibility and promising anti-plaque properties. To further investigate these effects, the interaction of these nanoparticles with the adipose tissue of Wistar rats (in vivo) and human atherosclerotic plaques (ex vivo) was studied. For the in vivo study, cobalt-chromium (CoCr) alloy tubes, which are used for coronary stent manufacturing, were prepared with a coating of polylactic acid (PLA) which contained either modified or non-modified Fe@C NPs in a 5% by weight concentration. The tubes were implanted into an area of subcutaneous fat in Wistar rats, where changes in the histological structure and functional properties of the surrounding tissue were observed in the case of coatings modified with Fe@C NPs. For the ex vivo study, freshly explanted human atherosclerotic plaques were treated in the physiological solution with doses of modified Fe@C NPs, with mass equal to 5% or 25% relative to the plaques. This treatment resulted in the release of cholesterol-like compounds from the surface of the plaques into the solution, thus proving a pronounced destructive effect on the plaque structure. Chemically modified Fe@C NPs, when used as an anti-atherosclerosis agent, were able to activate the activity of macrophages, which could lead to the destruction of atherosclerotic plaques structures. These findings could prove the fabrication of next-generation vascular stents with built-in anti-atherosclerotic agents.


Subject(s)
Atherosclerosis , Nanoparticles , Plaque, Atherosclerotic , Adipose Tissue/pathology , Animals , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Carbon/pharmacology , Carbon/therapeutic use , Humans , Iron/therapeutic use , Nanoparticles/chemistry , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Rats , Rats, Wistar
2.
Biomater Adv ; 134: 112697, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35581073

ABSTRACT

The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 µg mL-1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 µg mL-1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 µg mL-1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Carbon/chemistry , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria/metabolism , Mice , Staphylococcus aureus
3.
Biomedicines ; 9(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34356866

ABSTRACT

Atherosclerosis, a systematic degenerative disease related to the buildup of plaques in human vessels, remains the major cause of morbidity in the field of cardiovascular health problems, which are the number one cause of death globally. Novel atheroprotective HDL-mimicking chemically modified carbon-coated iron nanoparticles (Fe@C NPs) were produced by gas-phase synthesis and modified with organic functional groups of a lipophilic nature. Modified and non-modified Fe@C NPs, immobilized with polycaprolactone on stainless steel, showed high cytocompatibility in human endothelial cell culture. Furthermore, after ex vivo treatment of native atherosclerotic plaques obtained during open carotid endarterectomy surgery, Fe@C NPs penetrated the inner structures and caused structural changes of atherosclerotic plaques, depending on the period of implantation in Wistar rats, serving as a natural bioreactor. The high biocompatibility of the Fe@C NPs shows great potential in the treatment of atherosclerosis disease as an active substance of stent coatings to prevent restenosis and the formation of atherosclerotic plaques.

4.
J Am Chem Soc ; 143(21): 8164-8176, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34019759

ABSTRACT

Thermally resistant air-stable organic triradicals with a quartet ground state and a large energy gap between spin states are still unique compounds. In this work, we succeeded to design and prepare the first highly stable triradical, consisting of oxoverdazyl and nitronyl nitroxide radical fragments, with a quartet ground state. The triradical and its diradical precursor were synthesized via a palladium-catalyzed cross-coupling reaction of diiodoverdazyl with nitronyl nitroxide-2-ide gold(I) complex. Both paramagnetic compounds were fully characterized by single-crystal X-ray diffraction analysis, superconducting quantum interference device magnetometry, EPR spectroscopy in various matrices, and cyclic voltammetry. In the diradical, the verdazyl and nitronyl nitroxide centers demonstrated full reversibility of redox process, while for the triradical, the electrochemical reduction and oxidation proceed at practically the same redox potentials, but become quasi-reversible. A series of high-level CASSCF/NEVPT2 calculations was performed to predict inter- and intramolecular exchange interactions in crystals of di- and triradicals and to establish their magnetic motifs. Based on the predicted magnetic motifs, the temperature dependences of the magnetic susceptibility were analyzed, and the singlet-triplet (135 ± 10 cm-1) and doublet-quartet (17 ± 2 and 152 ± 19 cm-1) splitting was found to be moderate. Unique high stability of synthesized verdazyl-nitronylnitroxide triradical opens new perspectives for further functionalization and design of high-spin systems with four or more spins.

5.
Phys Chem Chem Phys ; 22(38): 21881-21887, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32968753

ABSTRACT

The on-demand generation of stable organic radicals from the precursors can be considered as an essential challenge for the plethora of applications in various fields of science. In this contribution, we prepared a range of N-(methyl)benzyl derivatives of 6-oxoverdazyl via atom transfer radical addition from moderate to high yields and studied their thermal- and photo-initiated homolysis. The kinetics of homolysis was measured, and the dissociating rate constant kd, activation energy Ea and frequency factor A were estimated. Variation of the substituent at the C3-position of the verdazyl ring was successfully applied for fine-tuning the homolysis rate: the value of kd was higher for alkylverdazyls with electron-withdrawing groups, e.g., the para nitro group afforded a 6-fold increase in kd. In contrast to thermal homolysis, the rate of photoinduced decomposition depends on both the extinction coefficient and the value of activation energy. Thus, nitro-containing alkylated verdazyls show the highest homolysis rate in both types of initiations. The achieved results afford a novel opportunity in the controlled generation of verdazyls and further application of these compounds in medicine and chemical industry.

6.
Angew Chem Int Ed Engl ; 59(46): 20704-20710, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-32715591

ABSTRACT

Thermally stable organic diradicals with a triplet ground state along with large singlet-triplet energy gap have significant potential for advanced technological applications. A series of phenylene-bridged diradicals with oxoverdazyl and nitronyl nitroxide units were synthesized via a palladium-catalyzed cross-coupling reaction of iodoverdazyls with a nitronyl nitroxide-2-ide gold(I) complex with high yields. The diradicals exhibit high stability and do not decompose in an inert atmosphere up to 180 °C. For the diradicals, both substantial AF (ΔEST ≈-64 cm-1 ) and FM (ΔEST ≥25 and 100 cm-1 ) intramolecular exchange interactions were observed. The sign of the exchange interaction is determined both by the bridging moiety (para- or meta-phenylene) and by the type of oxoverdazyl block (C-linked or N-linked). Upon crystallization, diradicals with the triplet ground state form unique one-dimensional exchange-coupled chains with strong intra- and weak inter-diradical ferromagnetic coupling.

7.
Chempluschem ; 85(1): 159-162, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31943893

ABSTRACT

An antiferromagnetically (AFM) coupled biradical based on oxoverdazyl and nitronylnitroxide was synthesized in 46 % yield using Sonogashira coupling. The obtained heterobiradical evidenced distinct properties of both radical entities in solution. Depending on the solvent, the prepared biradical crystallized in two different forms. SQUID magnetization measurements on Form II showed coupling constants JintraII /kB =-2.1 K and zJinterII /kB =-11.5 K. Consequently, total intermolecular exchange interactions are five times larger than the intramolecular ones. Further, DFT calculations explained this phenomenon and indicated the advantage of Form I for further in-depth investigations.

8.
Int J Biol Macromol ; 132: 24-31, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30922912

ABSTRACT

The work is focused on the development of microspheres based on the combination of two polysaccharides; chitosan and alginic acid with the aim to allocate, hold, release and protect environmentally sensible molecules. The microspheres were prepared using a solvent-free, low cost and scalable approach and two enzymes; trypsin and protease from Aspergillus Oryzae have been used as a model to evaluate the microspheres peculiarities. The proteins were encapsulated during the microspheres preparation. The relationship between the polysaccharides weight ratio and the morphology, stability and ability of the carrier to allocate the enzymes has been evaluated. The enzymatic activity and the release kinetics were assessed in different conditions to assess the impact of the external environment. Obtained results demonstrate the efficacy of the prepared microspheres to preserve the activity of relevant bioactive compounds which are highly relevant in food, cosmetic and pharmaceutic, but the application is limited due to their high sensibility.


Subject(s)
Alginic Acid/chemistry , Chitosan/chemistry , Enzymes, Immobilized/chemistry , Microspheres , Trypsin/chemistry , Alginic Acid/toxicity , Animals , Aspergillus oryzae/enzymology , Capsules , Chitosan/toxicity , Enzymes, Immobilized/metabolism , Humans , Hydrogen-Ion Concentration , Materials Testing , Mice , NIH 3T3 Cells , Trypsin/metabolism
9.
J Org Chem ; 83(19): 12056-12070, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30205009

ABSTRACT

Pseudocyclic 2-benzimidazolyl-substituted diaryliodonium salts were obtained by the reaction of the corresponding [hydroxy(tosyloxy)iodo]arenes with arenes in the presence of trifluoromethanesulfonic acid. X-ray structural analysis of these iodonium salts confirmed their pseudocyclic structure with a short (2.57-2.58 Å) noncovalent I···N interaction. Treatment of 2-benzimidazolyl-substituted diaryliodonium triflates with a base afforded novel five-membered iodine-nitrogen heterocycles.

10.
Int J Biol Macromol ; 117: 773-780, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29874555

ABSTRACT

ß-carotene is a natural compound with significant antioxidant activity. However, its poor solubility in water and low stability reduce its potential application. Innovative polyplexes based on the combination of amphiphilic chitosan assembled with DNA have been developed using a solvent-free, simple and low-cost method with the aim to load, retain and enhance the antioxidant capability of ß-carotene. The polyplexes, with dimension about 100 nm, and excellent stability, were able to hold up to 400 µg of ß-carotene per mg of the carrier, with minimal loss till two weeks. The antioxidant activity was significantly enhanced after loading, as demonstrated using two well known methods. Cytotoxicity assay confirmed the not toxicity of the system. The results suggest the polyplexes as an excellent candidate to develop formulation able to preserve and enhance the peculiarities of compounds which are used mainly in food, cosmetic and pharmaceutic but with still some limitations.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Chitosan/chemistry , DNA/chemistry , Hydrophobic and Hydrophilic Interactions , beta Carotene/chemistry , beta Carotene/pharmacology , Animals , Antioxidants/toxicity , Biphenyl Compounds/chemistry , Drug Stability , Mice , NIH 3T3 Cells , Picrates/chemistry , Solubility , beta Carotene/toxicity
11.
J Photochem Photobiol B ; 181: 80-88, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29524849

ABSTRACT

An innovative microcarrier based on a carboxy-enriched and branched polylactic acid derivative was developed to enhance the in vitro phototoxicity of the photosensitizer and prodrug 5-aminolevulinic. Microparticles, prepared by double emulsion technique and loaded with the prodrug were carefully characterized and the effect of the polymer structure on the chemical, physical and biological properties of the final product was evaluated. Results showed that microparticles have a spherical shape and ability to allocate up to 30 µg of the photosensitizer per mg of carrier despite their difference in solubility. Release studies performed in various simulated physiological conditions demonstrate the influence of the branched structure and the presence of the additional carboxylic groups on the release rate and the possibility to modulate it. In vitro assays conducted on human epithelial adenocarcinoma cells proved the not cytotoxicity of the carriers in a wide range of concentrations. The hemocompatibility and surface proteins adsorption were evaluated at different microparticles concentrations to evaluate the safety and estimate the possible microparticles residential time in the bloodstream. The advantages, of loading 5-aminolevulinic acid in the prepared carrier has been deeply described in terms of enhanced phototoxicity, compared to the free 5-aminolevulinic acid formulation after irradiation with light at 635 nm. The obtained results demonstrate the advantages of the prepared derivative compared to the linear polylactide for future application in photodynamic therapy based on the photosensitizer 5-aminolevulinic acid.


Subject(s)
Aminolevulinic Acid/chemistry , Photosensitizing Agents/chemistry , Polyesters/chemistry , Aminolevulinic Acid/metabolism , Aminolevulinic Acid/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Liberation , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , HeLa Cells , Hemolysis/drug effects , Humans , Hydrogen-Ion Concentration , Light , Photosensitizing Agents/toxicity , Solubility
12.
Int J Pharm ; 526(1-2): 380-390, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28465052

ABSTRACT

The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500µg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake.


Subject(s)
Antineoplastic Agents/administration & dosage , Chitosan/chemistry , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Nanoparticles/chemistry , HeLa Cells , Humans , Surface Properties
13.
Beilstein J Org Chem ; 11: 358-62, 2015.
Article in English | MEDLINE | ID: mdl-25977709

ABSTRACT

An environmentally friendly Matsuda-Heck reaction with arenediazonium tosylates has been developed for the first time. A range of alkenes was arylated in good to quantitative yields in water. The reaction is significantly accelerated when carried out under microwave heating. The arylation of haloalkylacrylates with diazonium salts has been implemented for the first time.

14.
Org Lett ; 10(18): 3961-4, 2008 Sep 18.
Article in English | MEDLINE | ID: mdl-18722457

ABSTRACT

A new, simple, and effective method for the diazotization of a wide range of arylamines has been developed by using a polymer-supported diazotization agent in the presence of p-toluenesulfonic acid. Various pure arenediazonium tosylates with unusual stabilities can be easily prepared by this method. As a result, these salts are useful and versatile substrates for subsequent transformations, such as halogenation and Heck-type reactions. The unusual stabilities of arenediazonium tosylates are also preliminarily discussed with their X-ray structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...