Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 144: 26-35, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30014976

ABSTRACT

Two column pairs filled with 3.05-m of a sandy soil from the Upper San Gabriel Valley were operated for a period of four and ½ years on municipal effluent from the San Jose Creek Water Reclamation Plant operated by the Sanitation Districts of Los Angeles County (LACSD). One column pair was fed filtered, chlorinated effluent (tertiary effluent) for the entire period. The other pair was fed ozonated secondary effluent for 8-mo, ozonated secondary effluent filtered through biological activated carbon (O3/BAC) for 7-mo and tertiary effluent for 38-mo. Each column pair was operated in series, where the first column was operated for a shorter residence time and the second column for a longer residence time. Residence times tested were 5-d, 28-d, 30-d, 58-d, 60-d, 150-d and 180-d. For the last 38-mo, both pairs of columns had a residence time of 30-d in the first column and the total residence time of the two pairs was 150 and 180-d, respectively. Testing showed both of these pairs had the same long-term performance. The column pairs with a 150 to 180-d residence time, which were both fed tertiary effluent, reached an effluent total organic carbon (TOC) of 1.8 mg/L. Column pairs with a 28 to 30-d residence time, which were fed tertiary, ozonated, and O3/BAC effluent, reached effluent TOCs of 2.3, 2.1 and 1.8 mg/L respectively. In the latter, some TOC removal was shifted from the soil columns to the BAC. During the last 38 months of testing, using tertiary effluent as the source water, a series of sampling events was performed throughout the soil column system for N-nitrosodimethylamine (NDMA) and chemicals of emerging concern (CECs). NDMA was substantially reduced in all the columns, with a median value of 3 ng/L after 30-d and <2 ng/L after both 150 and 180-d. Twenty-one CECs were found in the majority of tertiary effluent samples, twelve of which were attenuated by the soil columns and the remaining were not. Chemicals found to be recalcitrant were 4-nonylphenol, acesulfame-k, carbamazepine, lidocaine, primidone, simazine, sucralose, sulfamethoxazole, and TCEP. Using excitation-emission matrix (EEM) techniques, soluble microbial products (SMP) peak characteristic of effluent organic matter (EfOM) is nearly eliminated after a 30-d hydraulic retention time (HRT) and completely eliminated in the 150/180-d samples. The intensity of the other peaks is significantly reduced as well, resulting in an EEM much like that of natural groundwater.


Subject(s)
Groundwater/chemistry , Soil/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Carbamazepine/chemistry , Carbamazepine/isolation & purification , Carbon/analysis , Charcoal , Dimethylnitrosamine/chemistry , Dimethylnitrosamine/isolation & purification , Recycling , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation
2.
Water Res ; 46(19): 6563-73, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23079130

ABSTRACT

The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 µg/L of domoic acid (DA), 2 µg/L of saxitoxin (STX) and 20 µg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the ability of typical RO operations to effectively remove these toxins.


Subject(s)
Kainic Acid/analogs & derivatives , Marine Toxins/analysis , Okadaic Acid/analysis , Oxocins/analysis , Saxitoxin/analysis , Seawater/chemistry , Water Purification/methods , California , Environmental Monitoring , Harmful Algal Bloom , Kainic Acid/analysis , Kainic Acid/chemistry , Marine Toxins/chemistry , Okadaic Acid/chemistry , Osmosis , Oxocins/chemistry , Pilot Projects , Saxitoxin/chemistry
3.
Water Res ; 44(2): 385-416, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19664796

ABSTRACT

Seawater desalination by reverse osmosis (RO) is a reliable method for augmenting drinking water supplies. In recent years, the number and size of these water projects have increased dramatically. As freshwater resources become limited due to global climate change, rising demand, and exhausted local water supplies, seawater desalination will play an important role in the world's future water supply, reaching far beyond its deep roots in the Middle East. Emerging contaminants have been widely discussed with respect to wastewater and freshwater sources, but also must be considered for seawater desalination facilities to ensure the long-term safety and suitability of this emerging water supply. Harmful algal blooms, frequently referred to as 'red tides' due to their vibrant colors, are a concern for desalination plants due to the high biomass of microalgae present in ocean waters during these events, and a variety of substances that some of these algae produce. These compounds range from noxious substances to powerful neurotoxins that constitute significant public health risks if they are not effectively and completely removed by the RO membranes. Algal blooms can cause significant operational issues that result in increased chemical consumption, increased membrane fouling rates, and in extreme cases, a plant to be taken off-line. Early algal bloom detection by desalination facilities is essential so that operational adjustments can be made to ensure that production capacity remains unaffected. This review identifies the toxic substances, their known producers, and our present state of knowledge regarding the causes of toxic episodes, with a special focus on the Southern California Bight.


Subject(s)
Harmful Algal Bloom , Water Purification/methods , California , Environmental Monitoring , Eukaryota/growth & development , Eukaryota/pathogenicity , Geography , Marine Toxins/analysis , Marine Toxins/toxicity , Plankton/growth & development , Plankton/pathogenicity , Seawater/chemistry , Water Pollutants/analysis , Water Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...