Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Biol (Camb) ; 162024 Jan 23.
Article in English | MEDLINE | ID: mdl-38402577

ABSTRACT

Clustering of cells is an essential component of many biological processes from tissue formation to cancer metastasis. We develop a minimal, Vicsek-based model of cellular interactions that robustly and accurately captures the variable propensity of different cells to form groups when confined. We calibrate and validate the model with experimental data on clustering affinities of four lines of tumor cells. We then show that cell clustering or separation tendencies are retained in environments with higher cell number densities and in cell mixtures. Finally, we calibrate our model with experimental measurements on the separation of cells treated with anti-clustering agents and find that treated cells maintain their distances in denser suspensions. We show that the model reconstructs several cell interaction mechanisms, which makes it suitable for exploring the dynamics of cell cluster formation as well as cell separation. Insight: We developed a model of cellular interactions that captures the clustering and separation of cells in an enclosure. Our model is particularly relevant for microfluidic systems with confined cells and we centered our work around one such emerging assay for the detection and research on clustering breast cancer cells. We calibrated our model using the existing experimental data and used it to explore the functionality of the assay under a broader set of conditions than originally considered. Future usages of our model can include purely theoretical and computational considerations, exploring experimental devices, and supporting research on small to medium-sized cell clusters.


Subject(s)
Algorithms , Neoplasms , Cluster Analysis
2.
Adv Theory Simul ; 6(1): 2200481, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36718198

ABSTRACT

Our efforts as a society to combat the ongoing COVID-19 pandemic are continuously challenged by the emergence of new variants. These variants can be more infectious than existing strains and many of them are also more resistant to available vaccines. The appearance of these new variants cause new surges of infections, exacerbated by infrastructural difficulties, such as shortages of medical personnel or test kits. In this work, a high-resolution computational framework for modeling the simultaneous spread of two COVID-19 variants: a widely spread base variant and a new one, is established. The computational framework consists of a detailed database of a representative U.S. town and a high-resolution agent-based model that uses the Omicron variant as the base variant and offers flexibility in the incorporation of new variants. The results suggest that the spread of new variants can be contained with highly efficacious tests and mild loss of vaccine protection. However, the aggressiveness of the ongoing Omicron variant and the current waning vaccine immunity point to an endemic phase of COVID-19, in which multiple variants will coexist and residents continue to suffer from infections.

3.
J Urban Health ; 99(5): 909-921, 2022 10.
Article in English | MEDLINE | ID: mdl-35668138

ABSTRACT

The ongoing pandemic is laying bare dramatic differences in the spread of COVID-19 across seemingly similar urban environments. Identifying the urban determinants that underlie these differences is an open research question, which can contribute to more epidemiologically resilient cities, optimized testing and detection strategies, and effective immunization efforts. Here, we perform a computational analysis of COVID-19 spread in three cities of similar size in New York State (Colonie, New Rochelle, and Utica) aiming to isolate urban determinants of infections and deaths. We develop detailed digital representations of the cities and simulate COVID-19 spread using a complex agent-based model, taking into account differences in spatial layout, mobility, demographics, and occupational structure of the population. By critically comparing pandemic outcomes across the three cities under equivalent initial conditions, we provide compelling evidence in favor of the central role of hospitals. Specifically, with highly efficacious testing and detection, the number and capacity of hospitals, as well as the extent of vaccination of hospital employees are key determinants of COVID-19 spread. The modulating role of these determinants is reduced at lower efficacy of testing and detection, so that the pandemic outcome becomes equivalent across the three cities.


Subject(s)
COVID-19 , Humans , Cities/epidemiology , COVID-19/epidemiology , New York/epidemiology , Pandemics , SARS-CoV-2 , Environment Design
4.
Adv Theory Simul ; 5(6): 2100521, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35540703

ABSTRACT

The potential waning of the vaccination immunity to COVID-19 could pose threats to public health, as it is tenable that the timing of such waning would synchronize with the near-complete restoration of normalcy. Should also testing be relaxed, a resurgent COVID-19 wave in winter 2021/2022 might be witnessed. In response to this risk, an additional vaccine dose, the booster shot, is being administered worldwide. A projected study with an outlook of 6 months explores the interplay between the rate at which boosters are distributed and the extent to which testing practices are implemented, using a highly granular agent-based model tuned on a medium-sized US town. Theoretical projections indicate that the administration of boosters at the rate at which the vaccine is currently administered could yield a severe resurgence of the pandemic. Projections suggest that the peak levels of mid-spring 2021 in the vaccination rate may prevent such a scenario to occur, although exact agreement between observations and projections should not be expected due to the continuously evolving nature of the pandemic. This study highlights the importance of testing, especially to detect asymptomatic individuals in the near future, as the release of the booster reaches full speed.

5.
Adv Theory Simul ; 4(9): 2100157, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34514293

ABSTRACT

As COVID-19 vaccine is being rolled out in the US, public health authorities are gradually reopening the economy. To date, there is no consensus on a common approach among local authorities. Here, a high-resolution agent-based model is proposed to examine the interplay between the increased immunity afforded by the vaccine roll-out and the transmission risks associated with reopening efforts. The model faithfully reproduces the demographics, spatial layout, and mobility patterns of the town of New Rochelle, NY - representative of the urban fabric of the US. Model predictions warrant caution in the reopening under the current rate at which people are being vaccinated, whereby increasing access to social gatherings in leisure locations and households at a 1% daily rate can lead to a 28% increase in the fatality rate within the next three months. The vaccine roll-out plays a crucial role on the safety of reopening: doubling the current vaccination rate is predicted to be sufficient for safe, rapid reopening.

6.
Adv Theory Simul ; 4(3): 2170005, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34230905

ABSTRACT

Since 2020, COVID-19 has wreaked havoc across the planet, taking the lives of more than one million people. The uncertainty and novelty of the current conditions call for the development of theory and simulation tools that can support effective policy-making. In article number 2000277, Agnieszka Truszkowska, Maurizio Porfiri, and co-workers report a high-resolution, agent-based modeling platform to simulate the spreading of COVID-19 in the city of New Rochelle, NY-one of the first outbreaks registered in the United States. Image by Anna Sawulska, Agnieszka Truszkowska, Beata Truszkowska, and Maurizio Porfiri.

7.
Adv Theory Simul ; 4(3): 2000277, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33786413

ABSTRACT

Amid the ongoing COVID-19 pandemic, public health authorities and the general population are striving to achieve a balance between safety and normalcy. Ever changing conditions call for the development of theory and simulation tools to finely describe multiple strata of society while supporting the evaluation of "what-if" scenarios. Particularly important is to assess the effectiveness of potential testing approaches and vaccination strategies. Here, an agent-based modeling platform is proposed to simulate the spreading of COVID-19 in small towns and cities, with a single-individual resolution. The platform is validated on real data from New Rochelle, NY-one of the first outbreaks registered in the United States. Supported by expert knowledge and informed by reported data, the model incorporates detailed elements of the spreading within a statistically realistic population. Along with pertinent functionality such as testing, treatment, and vaccination options, the model accounts for the burden of other illnesses with symptoms similar to COVID-19. Unique to the model is the possibility to explore different testing approaches-in hospitals or drive-through facilities-and vaccination strategies that could prioritize vulnerable groups. Decision-making by public authorities could benefit from the model, for its fine-grain resolution, open-source nature, and wide range of features.

8.
J Biomed Mater Res B Appl Biomater ; 104(5): 941-8, 2016 07.
Article in English | MEDLINE | ID: mdl-25976358

ABSTRACT

Obstruction of fluid flow by stationary bubbles in a microchannel hemodialyzer decreases filtration performance and increases damage to blood cells through flow maldistribution. A polyethylene oxide (PEO)-polybutadiene (PB)-polyethylene oxide surface modification, previously shown to reduce protein fouling and water/air contact angle in polycarbonate microchannel hemodialyzers, can improve microchannel wettability and may reduce bubble stagnation by lessening the resistive forces that compete with fluid flow. In this study, the effect of the PEO-PB-PEO coating on bubble retention in a microchannel array was investigated. Polycarbonate microchannel surfaces were coated with PEO-PB-PEO triblock polymer via radiolytic grafting. Channel obstruction was measured for coated and uncoated microchannels after injecting a short stream of air bubbles into the device under average nominal water velocities of 0.9 to 7.2 cm/s in the channels. The presence of the PEO coating reduced obstruction of microchannels by stationary bubbles within the range of 1.8 to 3.6 cm/s, average nominal velocity. Numerical simulations based on the lattice Boltzmann method indicate that beneficial effects may be due to the maintenance of a lubricating, thin liquid film around the bubble. The determined effective range of the PEO coating for bubble management serves as an important design constraint. These findings serve to validate the multiutility of the PEO-PB-PEO coating (bubble lubrication, biocompatibility, and therapeutic loading). © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 941-948, 2016.


Subject(s)
Butadienes/chemistry , Coated Materials, Biocompatible/chemistry , Elastomers/chemistry , Polycarboxylate Cement/chemistry , Polyethylene Glycols/chemistry , Renal Dialysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...