Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 124(6): 1605-1615, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29543139

ABSTRACT

Mitochondrial impairments are often noted in aged skeletal muscle. The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is integral to maintaining mitochondria, and its expression declines in aged muscle. It remains unknown whether this is due to a transcriptional deficit during aging. Our study examined PGC-1α transcription in muscle from young and old F344BN rats. Using a rat PGC-1α promoter-reporter construct, we found that PGC-1α transcription was reduced by ∼65% in aged TA muscle, accompanied by decreases in PGC-1α mRNA and transcript stability. Altered expression patterns in PGC-1α transcription regulatory factors, including nuclear respiratory factor 2, upstream transcription factor 1, activating transcription factor 2, and yin yang 1, were noted in aged muscle. Acute contractile activity (CA) followed by recovery was employed to examine whether PGC-1α transcription could be activated in aged muscle similar to that observed in young muscle. AMPK and p38 signaling was attenuated in aged muscle. CA evoked an upregulation of PGC-1α transcription in both young and aged groups, whereas mRNAs encoding PGC-1α and cytochrome oxidase subunit IV were induced during the recovery period. Global DNA methylation, an inhibitory event for transcription, was enhanced in aged muscle, likely a result of elevated methyltransferase enzyme Dnmt3b in aged muscle. Successive bouts of CA for 7 days to evaluate longer-term consequences resulted in a rescue of PGC-1α and downstream mRNAs in aged muscle. Our data indicate that diminished mitochondria in aged muscle is due partly to a deficit in PGC-1α transcription, a result of attenuated upstream signaling. Contractile activity is an appropriate countermeasure to restore PGC-1α expression and mitochondrial content in aged muscle. NEW & NOTEWORTHY PGC-1α is a regulator of mitochondrial biogenesis in muscle. We demonstrate that PGC-1α expression is reduced in aging muscle due to decreases in transcriptional and posttranscriptional mechanisms. The transcriptional deficit is due to alterations in transcription factor expression, reduced signaling, and DNA methylation. Acute exercise can initiate signaling to reverse the transcriptional defect, restoring PGC-1α expression toward young values, suggesting a mechanism whereby aged muscle can respond to exercise for the promotion of mitochondrial biogenesis.


Subject(s)
Aging/metabolism , Gene Expression Regulation , Muscle Contraction , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Male , Rats, Inbred F344
2.
Biochem J ; 473(15): 2295-314, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27470593

ABSTRACT

Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action.


Subject(s)
Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Organelle Biogenesis , Aging/metabolism , Animals , Exercise , Humans , Mitochondrial Proteins/metabolism , Protein Transport , Signal Transduction , Trans-Activators/metabolism
3.
J Appl Physiol (1985) ; 121(3): 730-40, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27471236

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that confers cellular protection by upregulating antioxidant enzymes in response to oxidative stress. However, Nrf2 function within skeletal muscle remains to be further elucidated. We examined the role of Nrf2 in determining muscle phenotype using young (3 mo) and older (12 mo) Nrf2 wild-type (WT) and knockout (KO) mice. Basally, the absence of Nrf2 did not impact mitochondrial content. In intermyofibrillar mitochondria, lack of Nrf2 resulted in a 40% reduction in state 4 respiration, which coincided with a 68% increase in reactive oxygen species (ROS) emission. Nrf2 abrogation impaired in situ muscle performance, characterized by a 48% greater rate of fatigue and a 35% decrease in force within the first 5 min of stimulation. Acute treadmill exercise resulted in a 1.5-fold increase in Nrf2 activation via enhanced DNA binding in WT animals. In response to training, cytochrome-c oxidase activity increased by 20% in the WT animals; however, this response was attenuated in KO mice. Nrf2 protein was reduced 30% by training. Despite this, exercise training normalized respiration, ROS production, and muscle performance in KO mice. Our results suggest that Nrf2 transcriptional activity is increased by exercise and that Nrf2 is required for the maintenance of basal mitochondrial function as well as for the normal increase in specific mitochondrial proteins in response to training. Nonetheless, the decrements in mitochondrial function in Nrf2 KO muscle can be rescued by exercise training, suggesting that this restorative function operates via a pathway independent of Nrf2.


Subject(s)
Mitochondria, Muscle/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , NF-E2-Related Factor 2/metabolism , Physical Conditioning, Animal/methods , Physical Endurance/physiology , Animals , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/metabolism
4.
Integr Med Res ; 5(3): 187-197, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28462117

ABSTRACT

Skeletal muscle mitochondrial content and function are regulated by a number of specialized molecular pathways that remain to be fully defined. Although a number of proteins have been identified to be important for the maintenance of mitochondria in quiescent muscle, the requirement for these appears to decrease with the activation of multiple overlapping signaling events that are triggered by exercise. This makes exercise a valuable therapeutic tool for the treatment of mitochondrially based metabolic disorders. In this review, we summarize some of the traditional and more recently appreciated pathways that are involved in mitochondrial biogenesis in muscle, particularly during exercise.

5.
Prog Mol Biol Transl Sci ; 135: 99-127, 2015.
Article in English | MEDLINE | ID: mdl-26477912

ABSTRACT

Exercise is a well-known stimulus for the expansion of the mitochondrial pool within skeletal muscle. Mitochondria have a remarkable ability to remodel their networks and can respond to an array of signaling stimuli following contractile activity to adapt to the metabolic demands of the tissue, synthesizing proteins to expand the mitochondrial reticulum. In addition, when they become dysfunctional, these organelles can be recycled by a specialized intracellular system. The signals regulating this mitochondrial life cycle of synthesis and degradation during exercise are still an area of great research interest. As mitochondrial turnover has valuable consequences in physical performance, in addition to metabolic health, disease, and aging, consideration of the signals which control this cycle is vital. This review focuses on the regulation of mitochondrial turnover in skeletal muscle and summarizes our current understanding of the impact that exercise has in modulating this process.


Subject(s)
Exercise , Mitochondrial Dynamics , Aging/metabolism , Animals , DNA, Mitochondrial/metabolism , Humans , Muscle, Skeletal/metabolism , Signal Transduction
6.
Am J Physiol Cell Physiol ; 309(4): C228-38, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26063705

ABSTRACT

The purpose of this study was to determine how the expression of mitochondrial transcription factor A (Tfam), a protein that governs mitochondrial DNA (mtDNA) transcription and replication, is regulated during a state of reduced organelle content imposed by muscle disuse. We measured Tfam expression at 8 h, 16 h, 24 h, 3 days, or 7 days following denervation and hypothesized that decreases in Tfam expression would precede mitochondrial loss. Muscle mass was lowered by 13% and 38% at 3 and 7 days postdenervation, while cytochrome c oxidase activity fell by 33% and 39% at the same time points. Tfam promoter activation in vivo was reduced by 30-65% between 8 h and 3 days of denervation, while Tfam transcript half-life was increased following 8-24 h of denervation. Protein expression of RNA-binding proteins that promote mRNA degradation (CUG repeat-binding protein and K homology splicing regulator protein) was elevated at 3 and 7 days of denervation. Tfam localization within subsarcolemmal mitochondria was reduced after 3 and 7 days of denervation and was associated with suppression of the cytochrome c oxidase type I transcript at 3 days, indicating that denervation impairs both mitochondrial Tfam import and mtDNA transcription during an early period following denervation. These data suggest that putative signals downregulate Tfam transcription during the earliest stages following denervation but are counteracted by increases in Tfam mRNA stability. Import of Tfam into the mitochondrion seems to be the most critical point of regulation of this protein during the early onset of denervation, an impairment of which is coincident with the loss of mitochondria during muscle disuse.


Subject(s)
DNA-Binding Proteins/biosynthesis , Mitochondrial Proteins/biosynthesis , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Transcription Factors/biosynthesis , Animals , Gene Expression Regulation , Male , Mitochondria/metabolism , Muscle Denervation/methods , Random Allocation , Rats , Rats, Sprague-Dawley
7.
Am J Physiol Cell Physiol ; 308(9): C710-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25673772

ABSTRACT

Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α.


Subject(s)
Autophagy , Mitochondria, Muscle/metabolism , Mitophagy , Muscle Contraction , Muscle, Skeletal/metabolism , Physical Exertion , Transcription Factors/metabolism , Acidosis/etiology , Acidosis/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Biomarkers/blood , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins , Lactic Acid/blood , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Muscle/pathology , Muscle, Skeletal/pathology , Niemann-Pick C1 Protein , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Proteins/genetics , Proteins/metabolism , RNA, Messenger/metabolism , Signal Transduction , Time Factors , Transcription Factors/deficiency , Transcription Factors/genetics
8.
Integr Med Res ; 3(4): 161-171, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28664093

ABSTRACT

Chronic muscle disuse, such as that resulting from immobilization, denervation, or prolonged physical inactivity, produces atrophy and a loss of mitochondria, yet the molecular relationship between these events is not fully understood. In this review we attempt to identify the key regulatory steps mediating the loss of muscle mass and the decline in mitochondrial content and function. An understanding of common intracellular signaling pathways may provide much-needed insight into the possible therapeutic targets for treatments that will maintain aerobic energy metabolism and preserve muscle mass during disuse conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...