Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(7): 110352, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172152

ABSTRACT

Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.


Subject(s)
Chromatin/metabolism , Histone Deacetylase 1/metabolism , Neurons/metabolism , Animals , Calcium Signaling , Chromatin/ultrastructure , Chromosomes, Mammalian/metabolism , Energy Metabolism , Hippocampus/cytology , Long-Term Potentiation , Mice, Inbred C57BL , Rats, Wistar , Transcription, Genetic
2.
BMC Bioinformatics ; 22(1): 72, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596823

ABSTRACT

BACKGROUND: Bioimaging techniques offer a robust tool for studying molecular pathways and morphological phenotypes of cell populations subjected to various conditions. As modern high-resolution 3D microscopy provides access to an ever-increasing amount of high-quality images, there arises a need for their analysis in an automated, unbiased, and simple way. Segmentation of structures within the cell nucleus, which is the focus of this paper, presents a new layer of complexity in the form of dense packing and significant signal overlap. At the same time, the available segmentation tools provide a steep learning curve for new users with a limited technical background. This is especially apparent in the bulk processing of image sets, which requires the use of some form of programming notation. RESULTS: In this paper, we present PartSeg, a tool for segmentation and reconstruction of 3D microscopy images, optimised for the study of the cell nucleus. PartSeg integrates refined versions of several state-of-the-art algorithms, including a new multi-scale approach for segmentation and quantitative analysis of 3D microscopy images. The features and user-friendly interface of PartSeg were carefully planned with biologists in mind, based on analysis of multiple use cases and difficulties encountered with other tools, to offer an ergonomic interface with a minimal entry barrier. Bulk processing in an ad-hoc manner is possible without the need for programmer support. As the size of datasets of interest grows, such bulk processing solutions become essential for proper statistical analysis of results. Advanced users can use PartSeg components as a library within Python data processing and visualisation pipelines, for example within Jupyter notebooks. The tool is extensible so that new functionality and algorithms can be added by the use of plugins. For biologists, the utility of PartSeg is presented in several scenarios, showing the quantitative analysis of nuclear structures. CONCLUSIONS: In this paper, we have presented PartSeg which is a tool for precise and verifiable segmentation and reconstruction of 3D microscopy images. PartSeg is optimised for cell nucleus analysis and offers multi-scale segmentation algorithms best-suited for this task. PartSeg can also be used for the bulk processing of multiple images and its components can be reused in other systems or computational experiments.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Algorithms , Cell Nucleus , Image Processing, Computer-Assisted
4.
Nat Commun ; 11(1): 2120, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358536

ABSTRACT

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.


Subject(s)
Chromatin/metabolism , Chromatin/ultrastructure , Algorithms , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , DNA/ultrastructure , Humans , In Situ Hybridization , Microscopy, Confocal , Microscopy, Electron , Microscopy, Electron, Scanning
5.
Histochem Cell Biol ; 150(6): 579-592, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30238154

ABSTRACT

The past decades have provided remarkable insights into how the eukaryotic cell nucleus and the genome within it are organized. The combined use of imaging, biochemistry and molecular biology approaches has revealed several basic principles of nuclear architecture and function, including the existence of chromatin domains of various sizes, the presence of a large number of non-membranous intranuclear bodies, non-random positioning of genes and chromosomes in 3D space, and a prominent role of the nuclear lamina in organizing genomes. Despite this tremendous progress in elucidating the biological properties of the cell nucleus, many questions remain. Here, we highlight some of the key open areas of investigation in the field of nuclear organization and genome architecture with a particular focus on the mechanisms and principles of higher-order genome organization, the emerging role of liquid phase separation in cellular organization, and the functional role of the nuclear lamina in physiological processes.


Subject(s)
Cell Nucleus/genetics , Cell Nucleus/metabolism , Animals , Humans , Nuclear Lamina/genetics , Nuclear Lamina/metabolism
6.
Folia Histochem Cytobiol ; 54(3): 121-125, 2016.
Article in English | MEDLINE | ID: mdl-27654013

ABSTRACT

Normal pericardium consists of an outer sac called fibrous pericardium and an inner one called serous pericardium. The two layers of serous pericardium: visceral and parietal are separated by the pericardial cavity, which contains 20 to 60 mL of the plasma ultrafiltrate. The pericardium acts as mechanical protection for the heart and big vessels, and a lubrication to reduce friction between the heart and the surrounding structures. A very important role in all aspects of pericardial functions is played by mesothelial cells. The mesothelial cells form a monolayer lining the serosal cavity and play an important role in antigen presentation, inflammation and tissue repair, coagulation and fibrinolysis. The two major types of mesothelial cells, flat or cuboid, differ substantially in their ultrastructure and, probably, functions. The latter display abundant microvilli, RER, Golgi dense bodies, membrane-bound vesicles and intracellular vacuoles containing electron-dense material described as dense bodies. The normal structure and functions of the pericardium determine correct healing after its injury as a result of surgery or microbial infection. The unfavorable resolution of acute or chronic pericarditis leads to the formation of adhesions between pericardial leaflets which may lead to serious complications.


Subject(s)
Pericardium/physiology , Pericardium/physiopathology , Animals , Heart/physiology , Heart/physiopathology , Humans
7.
Cell ; 163(7): 1611-27, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686651

ABSTRACT

Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.


Subject(s)
Chromatin/chemistry , Genome, Human , Repressor Proteins/metabolism , Transcription, Genetic , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , DNA Packaging , Humans , RNA Polymerase II/metabolism , Salamandridae , Cohesins
8.
J Plant Physiol ; 174: 62-70, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25462968

ABSTRACT

Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.


Subject(s)
Cell Nucleus/metabolism , Cell Polarity , DNA Replication , Interphase , Meristem/metabolism , Mitosis , Onions/metabolism , Plant Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/drug effects , Cell Polarity/drug effects , DNA Replication/drug effects , Fluorescent Antibody Technique , Hydroxyurea/pharmacology , Indoleacetic Acids/pharmacology , Interphase/drug effects , Meristem/cytology , Meristem/drug effects , Microtubules/drug effects , Microtubules/metabolism , Mitosis/drug effects , Models, Biological , Onions/cytology , Onions/drug effects , Prophase , Protein Transport/drug effects , Stress, Physiological/drug effects
9.
Plant Physiol Biochem ; 73: 282-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24184448

ABSTRACT

Two anticancer drugs, ß-lapachone (ß-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18 h treatment with 100 µM ß-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of ß-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with γ-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of γ-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the ß-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on ß-lap- and HU-induced γ-phoshorylation of H2AX histones and the protective activity of HU against ß-lap suggest that their genotoxic activities are largely dissimilar. ß-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation.


Subject(s)
Cell Division/drug effects , DNA Damage , DNA Replication/drug effects , Hydroxyurea/adverse effects , Meristem/drug effects , Naphthoquinones/adverse effects , Onions/drug effects , Apoptosis/drug effects , Cell Cycle Checkpoints , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA, Plant/metabolism , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , Humans , Hydrogen Peroxide/metabolism , Meristem/metabolism , Mitosis/drug effects , Mutagens/adverse effects , Onions/genetics , Onions/metabolism , Phosphorylation , Plant Extracts/adverse effects , Plant Roots/drug effects , Plant Roots/metabolism , Stress, Physiological , Tabebuia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...