Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172184, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575007

ABSTRACT

This study focused on three of the most studied PFAS molecules, namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS). They were compared in terms of their adsorption capacity onto graphite intercalated compound (GIC), a low surface area, highly conductive and cheap adsorbent. The adsorption on GIC followed a pseudo second order kinetics and the maximum adsorption capacity using Langmuir was 53.9 µg/g for PFOS, 22.3 µg/g for PFOA and 0.985 µg/g for PFBS due to electrostatic attraction and hydrophobic interactions. GIC was added into an electrochemical oxidation reactor and >100 µg/L PFOS was found to be fully degraded (<10 ng/L) leaving degradation by-products such as PFHpS, PFHxS, PFPeS, PFBS, PFOA, PFHxA and PFBA below 100 ng/L after 5 cycles of adsorption onto GIC for 20 min followed by regeneration at 28 mA/cm2 for 10 min. PFBS was completely removed due to degradation by aqueous electrons on GIC flakes. Up to 98 % PFOA was removed by the process after 3 cycles of adsorption onto GIC for 20 min followed by regeneration at 25 mA/cm2 for 10 min. When PFBS was spiked individually, only 17 % was removed due to poor adsorption on GIC. There was a drop of 3-40 % by treating PFOS, PFOA and smaller sulfonates in a real water matrix under the same electrochemical conditions (20 mA/cm2), but PFOS and PFOA removal percentage were 95 and 68 % after 20 min at 20 mA/cm2.

2.
Environ Sci Pollut Res Int ; 31(13): 19946-19960, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367112

ABSTRACT

Perfluorooctanoic acid (PFOA) is a bioaccumulative synthetic chemical containing strong C-F bonds and is one of the most common per- and polyfluoroalkyl substances (PFAS) detected in the environment. Graphite intercalated compound (GIC) flakes were used to adsorb and degrade PFOA through electrochemical oxidation. The adsorption followed the Langmuir model with a loading capacity of 2.6 µg PFOA g-1 GIC and a second-order kinetics (3.354 g µg-1 min-1). 99.4% of PFOA was removed by the process with a half-life of 15 min. When PFOA molecules broke down, they released various by-products, such as short-chain perfluoro carboxylic acids like PFHpA, PFHxA, and PFBA. This breakdown indicates the cleavage of the perfluorocarbon chain and the release of CF2 units, suggesting a transformation or degradation of the original compound into these smaller acids. Shorter-chain perfluorinated compounds had slower degradation rates compared to longer-chain ones. Combining these two methods (adsorption and in situ electrochemical oxidation) was found to be advantageous because adsorption can initially concentrate the PFOA molecules, making it easier for the electrochemical process to target and degrade them. The electrochemical process can potentially break down or transform the PFAS compounds into less harmful substances through oxidation or other reactions.


Subject(s)
Fluorocarbons , Graphite , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Fluorocarbons/chemistry , Caprylates/chemistry
3.
Mar Environ Res ; 194: 106343, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215624

ABSTRACT

The increasing prevalence of microplastic pollution in aquatic environments has raised concerns about its impact on marine life. Among the different types of microplastics, polystyrene microplastics (PSMPs) are one of the most commonly detected in aquatic systems. Chaetoceros neogracile (diatom) is an essential part of the marine food web and plays a critical role in nutrient cycling. This study aimed to monitor the ecotoxicological impact of PSMPs on diatoms and observe enzymatic interactions through molecular docking simulations. Results showed that diatom growth decreased with increasing concentrations and exposure time to PSMPs, and the lowest photosynthetic efficiency (Fv/Fm) value was observed after 72 and 96 h of exposure to 200 mg L-1 of PSMPs. High concentrations of PSMPs led to a decrease in chlorophyll a content (up to 64.4%) and protein content (up to 35.5%). Molecular docking simulations revealed potential interactions between PSMPs and the extrinsic protein in photosystem II protein of diatoms, suggesting a strong affinity between the two. These findings indicate a detrimental effect of PSMPs on the growth and photosynthetic efficiency of diatoms and highlight the need for further research on the impact of microplastics on marine microbial processes.


Subject(s)
Diatoms , Water Pollutants, Chemical , Microplastics/toxicity , Polystyrenes/toxicity , Plastics/toxicity , Chlorophyll A , Molecular Docking Simulation , Water Pollutants, Chemical/metabolism
4.
Chemosphere ; 323: 138268, 2023 May.
Article in English | MEDLINE | ID: mdl-36870616

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a highly recalcitrant perfluoro chemical belonging to the family of per- and polyfluoroalkyl substances (PFAS). Its adsorption and degradation was demonstrated in a novel PFAS remediation process involving the adsorption onto graphite intercalated compounds (GIC) and the electrochemical oxidation. The Langmuir type of adsorption was characterized by a loading capacity of 53.9 µg PFOS g-1 GIC and a second order kinetics (0.021 g µg-1 min-1). Up to 99% of PFOS was degraded in the process with a half-life of 15 min. The breakdown by-products included short chain perfluoroalkane sulfonates such as Perfluoroheptanesulfonate (PFHpS), Perfluorohexanesulfonate (PFHxS), Perfluoropentanesulfonate (PFPeS) and Perfluorobutanesulfonate (PFBS), but also short chain perfluoro carboxylic acids such as perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) indicating different degradation pathways. These by-products could also be broken down but the shorter the chain the slower the degradation rate. This novel combined adsorption and electrochemical process offers an alternative treatment for PFAS contaminated waters.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Graphite , Adsorption , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis
5.
Article in English | MEDLINE | ID: mdl-36058871

ABSTRACT

On 24 February 2022, Russian military forces invaded Ukraine. The fighting has already caused unimaginable conditions and millions of people were forced to flee their homes. For decades, conflicts have been linked to environmental pollution, exposure to radioactivity and heavy metals as well as infectious diseases. The invasion may cause specific environmental risks, like the release of radioactive substances from nuclear power plants and contaminated soils. Because international collaboration is one of the most effective ways to address environmental problems, it is critical to establish scientific bodies within a global framework to identify concrete actions and tangible measures to provide immediate assistance to citizens. This commentary discusses the above issues from lessons learned from the past wars and the way forward in the Russian invasion of Ukraine.


Subject(s)
Metals, Heavy , Military Personnel , Humans , Russia , Ukraine
7.
Foods ; 10(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34359403

ABSTRACT

Dairy products are relevant in the food industries as functional ingredients for several food products and contribute towards human nutrition in ameliorating certain disorders. In this study, set yogurts were produced from raw milk and processed milk combined with 4% Lacprodan®PL20 concentration and subjected to two-stage pressure homogenization. The total solids concentration of the mixture was raised to 15% using SMP (skim milk powder). The purpose of this study was to investigate the effect of Lacprodan®PL20 on the set yogurt quality produced by homogenization-induced pressure and its interaction with milk components. The changes in the physical and chemical attributes of the milk fat globule membrane (MFGM) via destabilization of the membrane significantly affected the physicochemical properties of set yogurts produced from processed or raw milk. There was a slight variation in MFGM-specific proteins detected in the set yogurts. Set yogurt produced from homogenized raw milk (HRM) had a considerably higher water-holding capacity, firmness, and apparent viscosity. The microstructure of HRM was dense and compacted, unlike non-homogenized raw milk (NRM) with large MFGM fragments and pore holes between the matrixes. The inclusion of homogenization showed a remarkable improvement in set yogurt quality, promoting interaction between MFGM components and milk proteins.

8.
Ultrason Sonochem ; 48: 432-440, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080570

ABSTRACT

Ultrasound (ULS), sodium hydroxide (NaOH) and combined ultrasound/NaOH pre-treatment were applied to pre-treat waste activated sludge and improve the subsequent anaerobic digestion. Synergistic effect was observed when NaOH treatment was coupled with ultrasound treatment. The highest synergistic Chemical Oxygen Demand (COD) solubilization was observed when 0.02M NaOH was combined with five minutes ultrasonication: an extra 3000 mg/L was achieved on top of the NaOH (1975 mg/L) and ultrasonication (2900 mg/L) treatment alone. Further increase of NaOH dosage increased Soluble Chemical Oxygen Demand (SCOD), but did not increase the synergistic effect. Nine and 18 minutes ultrasonication led to 20% and 24% increase of methane production, respectively; Whereas, 0.05M NaOH pre-treatment did not improve the sludge biodegradability. Combined ultrasound/NaOH (9 min+0.05 M) showed 31% increase of methane production. A stepwise NaOH addition/ultrasound pre-treatment (0.02M+ULS for 5 min+0.02M+ULS for 4 min) was tested and resulted in 40% increase of methane production using 20% less chemicals.

9.
Article in English | MEDLINE | ID: mdl-28841359

ABSTRACT

Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO4). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH4+ N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.


Subject(s)
Metal Nanoparticles/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Zinc Oxide/analysis , Zinc/analysis , Adsorption , Biological Oxygen Demand Analysis , Ions , Metal Nanoparticles/toxicity , Microbial Viability/drug effects , Particle Size , Sewage/microbiology , Surface Properties , Water Pollutants, Chemical/toxicity , Zinc Oxide/toxicity
10.
Article in English | MEDLINE | ID: mdl-28276890

ABSTRACT

Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO4). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH4-N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu2+ indicated the loss of cell viability in sludge flocs.


Subject(s)
Copper/analysis , Nanoparticles/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Biological Oxygen Demand Analysis , Copper/chemistry , Ions , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
11.
Bioresour Technol ; 204: 17-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26771921

ABSTRACT

The treatment of leachate (Average TCOD=11.97 g/L, 14.4% soluble) from the organic fraction of municipal solid waste was investigated using a Submerged Anaerobic Membrane BioReactor (SAMBR), followed by an aerobic membrane bioreactor (AMBR) to polish this effluent. This paper investigated the exact nature and composition of the inorganic precipitate in each of the reactors in the process. The flux decreased due to precipitation of calcium as monohydrocalcite (CaCO3·H2O) containing traces of metals onto the SAMBR membrane because of high CO2 partial pressures. Precipitation of calcium in the AMBR was also observed due to a higher pH. In this case, phosphorus also precipitated with calcium in two different phases: the background layer contained calcium, oxygen, carbon and small amounts of phosphorus (2-6.7%), while flakes containing calcium, oxygen and higher amounts of phosphorus (10-17%) were probably hydroxyapatite (Ca5(PO4)3OH).


Subject(s)
Bioreactors , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal, Fluid/methods , Aerobiosis , Anaerobiosis , Carbon , Metals , Methane/chemistry , Nitrogen/chemistry , Oxygen , Phosphorus , Water Pollutants, Chemical
12.
J Environ Manage ; 168: 67-73, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26696607

ABSTRACT

This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM.


Subject(s)
Bacteria, Anaerobic/metabolism , Bioreactors , Solid Waste , Anaerobiosis , Humans , Membranes, Artificial , Waste Disposal, Fluid
13.
Bioresour Technol ; 185: 441-4, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25794810

ABSTRACT

Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization.


Subject(s)
Acetic Acid/chemistry , Biomass , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Biotechnology/methods , Chemistry, Organic , Hydrogen-Ion Concentration , Hydrolysis , Lignin/chemistry , Oxygen/chemistry , Sewage/microbiology , Solid Waste/analysis , Solubility
14.
Bioresour Technol ; 183: 47-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25722182

ABSTRACT

In this study, a fungal mash rich in hydrolytic enzymes was produced by solid state fermentation (SSF) of waste cake in a simple and efficient manner and was further applied for high-efficiency hydrolysis of mixed food wastes (FW). The enzymatic pretreatment of FW with this fungal mash resulted in 89.1 g/L glucose, 2.4 g/L free amino nitrogen, 165 g/L soluble chemical oxygen demand (SCOD) and 64% reduction in volatile solids within 24h. The biomethane yield and production rate from FW pretreated with the fungal mash were found to be respectively about 2.3 and 3.5-times higher than without pretreatment. After anaerobic digestion of pretreated FW, a volatile solids removal of 80.4±3.5% was achieved. The pretreatment of mixed FW with the fungal mash produced in this study is a promising option for enhancing anaerobic digestion of FW in terms of energy recovery and volume reduction.


Subject(s)
Biotechnology/methods , Food , Glucan 1,4-alpha-Glucosidase/metabolism , Methane/biosynthesis , Waste Products , Aerobiosis , Anaerobiosis , Aspergillus/metabolism , Biological Oxygen Demand Analysis , Biomass , Glucose/metabolism , Hydrolysis , Nitrogen/metabolism , Solubility
15.
Article in English | MEDLINE | ID: mdl-22506700

ABSTRACT

Plasticisers are commonly found in landfill leachate and accumulate in the environment. Some of them are known as disruptive endocrine compound. This manuscript assessed the toxicity of three common plasticisers, including Bis(2-Ethylhexyl)phthalate (DEHP), o-hydroxybiphenyl (HBP) and 2,6-di-tert-butyl-4-(dimethylaminomethyl) phenol (MAMP) on the methanogens during the anaerobic process. It was found that DEHP and MAMP did not impede methanogenesis up to 200 mg/L, but no additional methane could be obtained from their degradation. In contrast, HBP severely inhibited methanogens at 200 mg/L, but after acclimatisation it could be metabolised resulting in a 25% increase in methane production compared to the control.


Subject(s)
Plasticizers/toxicity , Anaerobiosis
16.
Enzyme Microb Technol ; 50(6-7): 337-42, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22500902

ABSTRACT

Rapeseed meal, a major byproduct of biodiesel production, has been used as a low-cost raw material for the production of a generic microbial feedstock through a consolidated bioconversion process. Various strategies were tested for the production of a novel fermentation medium, rich in free amino nitrogen (FAN): commercial enzymes (CEs) (2.7 mg g⁻¹ dry meal), liquid state fungal pre-treatment (LSF) using Aspergillus oryzae (4.6 mg g⁻¹), liquid state fungal pre-treatment followed by fungal autolysis (LSFA) (9.13 mg g⁻¹), liquid state pre-treatment using fungal enzymatic broth (EB) (2.1 mg g⁻¹), but the best strategy was a solid state fungal pre-treatment followed by fungal autolysis (34.5 mg g⁻¹). The bioavailability of the nitrogen sources in the novel medium was confirmed in fed-batch bioreactor studies, in which 82.3g dry cell L⁻¹ of the oleaginous yeast Rhodosporidium toruloides Y4 was obtained with a lipid content of 48%. The dry cell weight obtained was higher than that obtained using conventional yeast extract, due to a higher total nitrogen content in the novel biomedium. The fatty acids obtained from the microbial oil were similar to those derived from rapeseed oil.


Subject(s)
Basidiomycota/metabolism , Biofuels , Biotechnology/methods , Brassica rapa/metabolism , Nitrogen/metabolism , Oils/metabolism , Basidiomycota/genetics , Basidiomycota/growth & development , Bioreactors , Brassica rapa/microbiology , Culture Media , Fermentation , Lipids/biosynthesis
17.
Bioresour Technol ; 116: 295-301, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22522020

ABSTRACT

This paper focuses on a novel process for adding value to algae residue. In current processes oleaginous microalgae are grown and harvested for lipid production leaving a lipid-free algae residue. The process described here includes conversion of the carbohydrate fraction into glucose prior to lipid extraction. This can be fermented to produce up to 15% additional lipids using another oleaginous microorganism. It was found that in situ enzymes can hydrolyze storage carbohydrates in the algae into glucose and that a temperature of 55 °C for about 20 h gave the best glucose yield. Up to 75% of available carbohydrates were converted to a generic fermentation feedstock containing 73 g/L glucose. The bioconversion step was found to increase the free water content by 60% and it was found that when the bioconversion was carried out prior to the extraction step, it improved the solvent extractability of lipids from the algae.


Subject(s)
Biofuels/analysis , Biotechnology/methods , Microalgae/metabolism , Oils/metabolism , Batch Cell Culture Techniques , Biotechnology/instrumentation , Carbohydrates/analysis , Glucose/biosynthesis , Kinetics , Lipids/analysis , Microalgae/growth & development , Nitrogen/analysis , Rheology , Salinity , Temperature , Viscosity
18.
Article in English | MEDLINE | ID: mdl-21992219

ABSTRACT

In this study, various methods were compared to reduce the Chemical Oxygen Demand (COD) content of stabilised leachate from a Submerged Anaerobic Membrane Bioreactor (SAMBR). It was found that Powdered Activated Carbon (PAC) resulted in greater COD removals (84 %) than Granular Activated Carbon (GAC-80 %), an ultrafiltration membrane of 1kDa (75 %), coagulation-flocculation with FeCl(3) and polyelectrolyte (45 %), FeCl(3) alone (32 %), and polymeric adsorbents such as XAD7HP (46 %) and XAD4 (32 %). Results obtained on the <1 kDa fraction showed that PAC and GAC had a similar adsorption efficiency of about 60 % COD removal, followed by XAD7HP (48 %), XAD4 (27 %) and then FeCl(3) (23 %). The post-treatment sequence UF+GAC would result in a final effluent with less than 100 mg COD/L. Size Exclusion Chromatography (SEC) revealed that the extent of adsorption of low MW compounds onto PAC was limited due to low MW hydrophilic compounds, whereas the kinetics of PAC adsorption depended mainly on the adsorption of high MW aromatics.


Subject(s)
Bacteria, Anaerobic/metabolism , Bioreactors , Charcoal/metabolism , Membranes, Artificial , Water Pollutants, Chemical/metabolism , Water Purification/methods , Acrylic Resins , Adsorption , Anion Exchange Resins , Biological Oxygen Demand Analysis , Chromatography, Gel , Flocculation , Iron Compounds , Kinetics , Models, Chemical , Polystyrenes , Polyvinyls , Ultrafiltration
19.
Waste Manag ; 31(7): 1480-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21419612

ABSTRACT

This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 °C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO(2) g VS(-1) day(-1). Sanitization of the digestate at 65 °C for 7 days allowed a mature digestate to be obtained. At 4 g VS L(-1) d(-1) and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO(2) at a rate lower than 25 mg CO(2) g VS(-1) d(-1) after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO(2) g VS(-1) d(-1). The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.


Subject(s)
Bioreactors , Organic Chemicals/metabolism , Refuse Disposal/methods , Sewage/microbiology , Anaerobiosis , Biodegradation, Environmental , Carbon/metabolism , Carbon Dioxide/metabolism , Cities , Sewage/chemistry , Temperature , Time Factors , United Kingdom , Volatilization
20.
Water Res ; 44(3): 671-80, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19822341

ABSTRACT

This study investigated the performance of two submerged anaerobic membrane bioreactors (SAMBRs) operating at a mean solids residence time (SRT) of 30 (SAMBR30) and 300 days (SAMBR300) at mesophilic and psychrophilic temperatures. At 35 degrees C results showed that SAMBR30 and 300 could achieve 95% soluble chemical oxygen demand (SCOD) removal at 1.5 and 1.1 days HRT, respectively, whereas at 20 degrees C only SAMBR300 could maintain the same performance. Low temperatures were associated with higher bulk SCOD concentrations, which contributed to reducing the flux, but this was partly reversible once the SCOD was degraded. The utilization rate of compounds was affected differently by the drop in temperature with the concentration of some recalcitrants increasing, while for others such as bisphenol A it decreased when the temperature was decreased. Among the recalcitrants detected in SAMBR30 at 20 degrees C there were not only long chain fatty acids such as undecanoic acid and dodecanoic acid, but also long chain alkanes such as tetracosane and heneicosane that could not be hydrolyzed at 20 degrees C. In SAMBR300 these alkanes and acids only appeared at 10 degrees C, whereas at 20 degrees C complex compounds such as phenol, 2-chloro-4-(1,1-dimethylethyl), 6-tert-butyl-2,4-dimethylphenol, benzophenone, and n-butyl benzenesulfonamide were found.


Subject(s)
Bioreactors/microbiology , Cities , Gas Chromatography-Mass Spectrometry/methods , Membranes, Artificial , Refuse Disposal , Temperature , Waste Products/analysis , Acetates/analysis , Anaerobiosis , Biodegradation, Environmental , Charcoal , Propionates/analysis , Volatilization , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...