Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 73(11): 843-852, 2023 11.
Article in English | MEDLINE | ID: mdl-37768033

ABSTRACT

The Interagency Monitoring of PROtected Visual Environments (IMPROVE) network has collected airborne particulate matter (PM) samples at locations throughout the United States since 1988 and provided chemical speciation measurements on the samples using several techniques including X-ray fluorescence (XRF). New XRF instruments for measuring PM elemental content of IMPROVE samples were introduced in 2011. To evaluate the performance of these new instruments relative to the old instruments, archived sample from three IMPROVE monitoring sites were retrieved and analyzed on the new instruments. The agreement between the two instruments varied by element. Comparisons of the results were very good (slopes within 10% of unity) for most elements regularly measured well above the detection limits (sulfur, chlorine, potassium, titanium, vanadium, manganese, iron, copper, zinc, selenium, lead). Different particle compositions at the three sites highlighted different measurement interferences. High sea salt concentrations at the coastal site emphasized corrections applied in the old systems to light elements - sodium and magnesium - and resulted in poor agreement for these elements. Comparisons of the XRF measurements with collocated sulfate measurements by ion chromatography suggest that sulfur measurements from the new instruments are more precise but slight underestimates. Comparing elemental ratios to expected ratios for soil-derived PM demonstrate the new instruments are better at resolving the aluminum and silicon peaks.Implications: The presented work represents a comprehensive analysis of the method change enacted within the Interagency Monitoring of PROtected Visual Environments (IMPROVE) air monitoring network. This work describes the implications of the last change in elemental quantification methodology. The most important point for data users performing longitudinal analyses is that light elements (e.g., sodium - sulfur) were affected; the old instrumentation overestimated these elements while the current measurements are slightly underestimated. The authors recommend these results to be taken into consideration when interpreting sea salt and crustal sources of atmospheric dust.


Subject(s)
Air Pollutants , Air Pollution , United States , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Sodium/analysis , Sulfur/analysis
2.
J Air Waste Manag Assoc ; 72(11): 1316-1325, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070460

ABSTRACT

Thermal-optical analysis (TOA) has long been used to quantify organic carbon (OC) and elemental carbon (EC) on quartz-fiber filter samples collected in national ambient air monitoring networks. In the routine analysis of samples from the Chemical Speciation Network (CSN), we observed a considerable fraction of filter punches that remain gray or black in color after TOA was completed, suggesting the presence of EC that was not fully evolved at the highest temperature specified by the IMPROVE_A protocol (840°C). In this work, we explored the operational conditions necessary to evolve and quantify such residual EC. First, four heavily loaded CSN samples were analyzed to evaluate modifications to the IMPROVE_A protocol. We found that adding a higher temperature step at 930°C more effectively evolved the residual EC than did lengthening the duration of the 840°C step. Compared with the standard IMPROVE_A results, the modified protocol evolved additional EC of 1.08 to 4.45 µg cm-2 in mass, or 0.12 to 0.50 µg m-3 in concentration. This excess EC accounts for 27.1% to 45.3% of the total EC and 7.6% to 25.1% of the total carbon by standard IMPROVE_A. We then analyzed over 2600 samples from CSN using the extended IMPROVE_A protocol with higher maximum temperature (930°C). A total of 168 samples (6.4% of the total samples analyzed) contained measurable EC at the 930°C step. The average fraction of the evolvable residual EC mass in total EC is 5.7%, and up to 28% for samples with high total EC mass loading (i.e., 95th percentile and above).Implications: Our results suggest that CSN EC measured by the standard IMPROVE_A protocol should be considered a lower limit, and that a higher maximum heating temperature can be used to better quantify EC from CSN sites impacted by fresh urban emissions.


Subject(s)
Air Pollutants , Environmental Monitoring , Environmental Monitoring/methods , Temperature , Carbon/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Aerosols/analysis
3.
J Air Waste Manag Assoc ; 72(8): 905-913, 2022 08.
Article in English | MEDLINE | ID: mdl-35420929

ABSTRACT

The U.S. Environmental Protection Agency (EPA) modified its guidance on determining "method detection limits" (MDL) in 2017. The recommended procedures have not yet been applied to the analyses routinely done on filter samples for EPA's Chemical Speciation Network (CSN). This paper applies the new EPA procedure for estimating MDL to Energy Dispersive X-Ray Fluorescence (EDXRF) analysis of atmospheric aerosol samples collected on filters. The procedure involves estimating MDL by two approaches - statistical distributions of unloaded blank sample measurements and lightly loaded, spiked samples - and sets the MDL as the maximum of these two approaches. Spiked samples at low concentrations were developed using an aerosol deposition chamber to follow this approach. The MDL procedure was initially conducted on one EDXRF instrument, and the spike-based MDL was found to be higher than blank-based MDL for 28 of the 31 elements. The blank-based MDL was higher than the spike-based MDL for Si, K and Fe, which are common contaminants present in filter raw media or arising from EDXRF hardware. The annual verification performed using five EDXRF analyzers demonstrated that the MDL estimated following the EPA procedure was stable over time and analyzers for all elements except K, which yielded a higher MDL.Implications: Lightly loaded reference materials (RM) were developed for Energy Dispersive X-ray Fluorescence (EDXRF) measurements of elemental concentrations in filter-based particulate matter samples using a novel aerosol generation chamber. These RM were then used to estimate method detection limits (MDL) following U.S. Environmental Protection Agency guidance. These new MDL estimates were compared to alternative estimates and, for most elements, are higher. Our work provides EDXRF users with MDL estimates for each element and an assessment of different MDL estimation approaches.


Subject(s)
Environmental Monitoring , Aerosols , Environmental Monitoring/methods , Limit of Detection , United States , United States Environmental Protection Agency , X-Rays
4.
Environ Sci Technol ; 49(15): 9247-55, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26125610

ABSTRACT

The IMPROVE (Interagency Monitoring of Protected Visual Environments) network has characterized fine particulate matter composition at locations throughout the United States since 1988. A main objective of the network is to evaluate long-term trends in aerosol concentrations. Measurements inevitably advance over time, but changes in measurement technique have the potential to confound the interpretation of long-term trends. Problems of interpretation typically arise from changing biases, and changes in bias can be difficult to identify without comparison data that are consistent throughout the measurement series, which rarely exist. We created a consistent measurement series for exactly this purpose by reanalyzing the 15-year archives (1995-2009) of aerosol samples from three sites - Great Smoky Mountains National Park, Mount Rainier National Park, and Point Reyes National Seashore-as single batches using consistent analytical methods. In most cases, trend estimates based on the original and reanalysis measurements are statistically different for elements that were not measured above the detection limit consistently over the years (e.g., Na, Cl, Si, Ti, V, Mn). The original trends are more reliable for elements consistently measured above the detection limit. All but one of the 23 site-element series with detection rates >80% had statistically indistinguishable original and reanalysis trends (overlapping 95% confidence intervals).


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Confidence Intervals , Humans , Limit of Detection , United States
5.
Sci Total Environ ; 530-531: 519-525, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25934382

ABSTRACT

Ozone as an atmospheric pollutant is largely produced by anthropogenic precursors and can significantly impact human and ecosystem health, and climate. The U.S. Environmental Protection Agency has recently proposed lowering the ozone standard from 75 ppbv (MDA8 = Maximum Daily 8-Hour Average) to between 65 and 70 ppbv. This will result in remote areas of the Intermountain West that includes many U.S. National Parks being out of compliance, despite a lack of significant local sources. We used Pb isotope fingerprinting and back-trajectory analysis to distinguish sources of imported ozone to Great Basin National Park in eastern Nevada. During discrete Chinese Pb events (> 1.1 ng/m(3) & > 80% Asian Pb) trans-Pacific transported ozone was 5 ± 5.5 ppbv above 19 year averages for those dates. In contrast, concentrations during regional transport from the Los Angeles and Las Vegas areas were 15 ± 2 ppbv above the long-term averages, and those characterized by high-altitude transport 3 days prior to sampling were 19 ± 4ppbv above. However, over the study period the contribution of trans-Pacific transported ozone increased at a rate of 0.8 ± 0.3 ppbv/year, suggesting that Asian inputs will exceed regional and high altitude sources by 2015-2020. All of these sources will impact regulatory compliance with a new ozone standard, given increasing global background.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Lead/analysis , Ozone/analysis , Air Pollution/statistics & numerical data , Atmosphere/chemistry , Environmental Policy , Los Angeles , Nevada , United States , United States Environmental Protection Agency
6.
Environ Sci Technol ; 46(18): 10106-13, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22913377

ABSTRACT

The IMPROVE (Interagency Monitoring of Protected Visual Environments) network has collected airborne particulate matter (PM) samples at locations throughout the United States since 1988. These samples have been analyzed for elemental content using analytical methods that evolved over the years. Changes in analytical methods sometimes introduced shifts in reported concentrations that are evident in the historical record. We sought to illuminate the effects of methodological changes by reanalyzing archived samples with current methods. To test the feasibility of this approach, the 15-year archive of PM samples from Great Smoky Mountains National Park was selected for reanalysis as a single analytical batch using a common protocol and calibration. Comparisons of the reanalyses and original analyses indicate that concentrations of all but one measured element, Br, remained stable on the filters over years of storage. The agreement between the two analyses varied with element and original measurement method. For elements measured well above their contemporary detection limits - S, K, Ca, Fe, and Zn - the reanalysis established that method changes had limited impacts on reported concentrations, generally <10%. For elements originally measured near their detection limits, reanalysis confirmed the presence of discontinuities in the data record, many of which were previously recognized and documented as method-related.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Research Design , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...